4.水理地質総合解析(経過報告)

※本資料は検討段階の途中経過報告であり、 最終的な結論を示すものではありません。

各地層の透水性

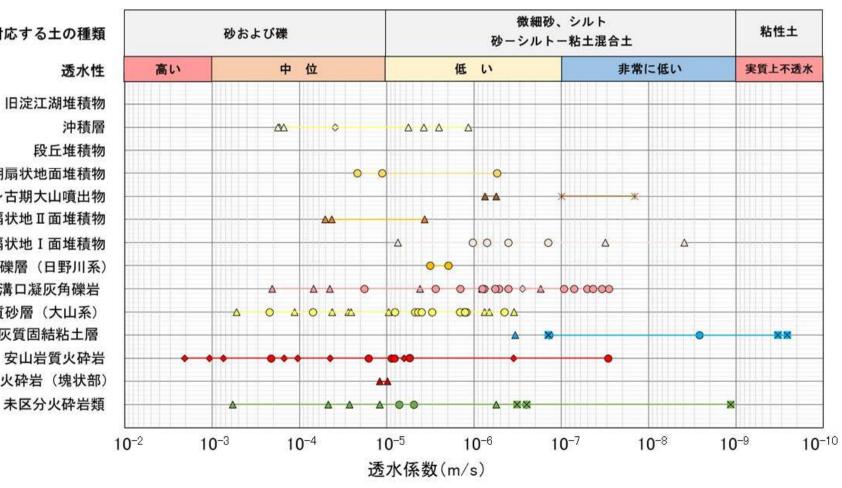
現場透水試験、室内透水試験結果

凡例

▼ 室内透水試験

* 不飽和透水試験

▲ チューブ法

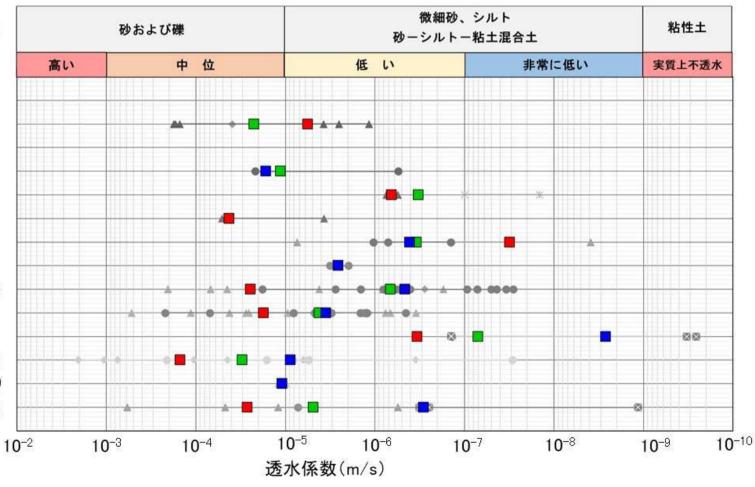

◇ピエゾメーター法(注水法)

○ピエゾメーター法(回復法)

対応する土の種類

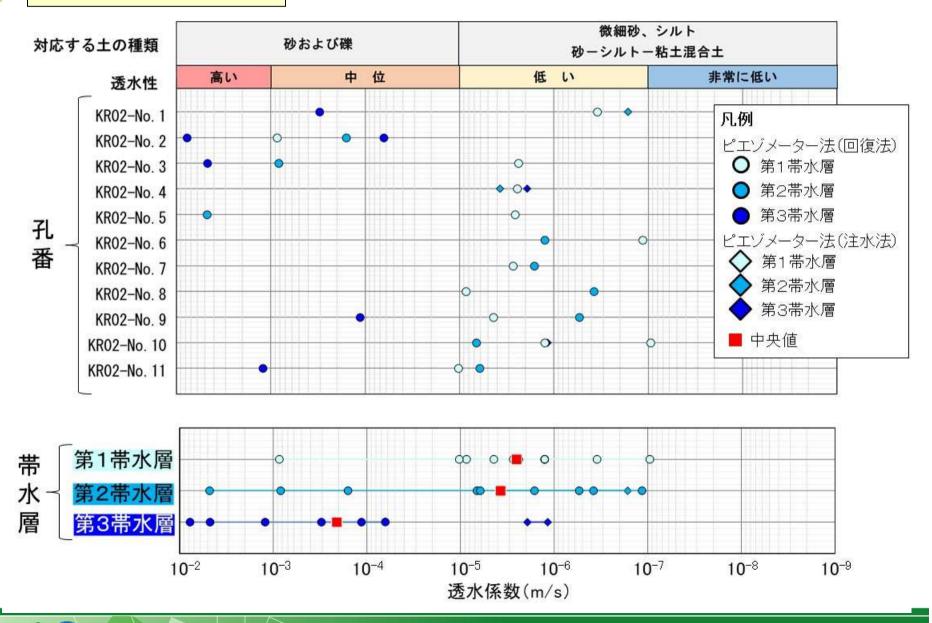
透水性

旧淀江湖堆積物 沖積層 段丘堆積物 中期扇状地面堆積物 中期~古期大山噴出物 古期扇状地Ⅱ面堆積物 古期扇状地I面堆積物 火山灰質砂礫層 (日野川系) 溝口凝灰角礫岩 火山灰質砂層 (大山系) 火山灰質固結粘土層 安山岩質火砕岩 安山岩質火砕岩 (塊状部)

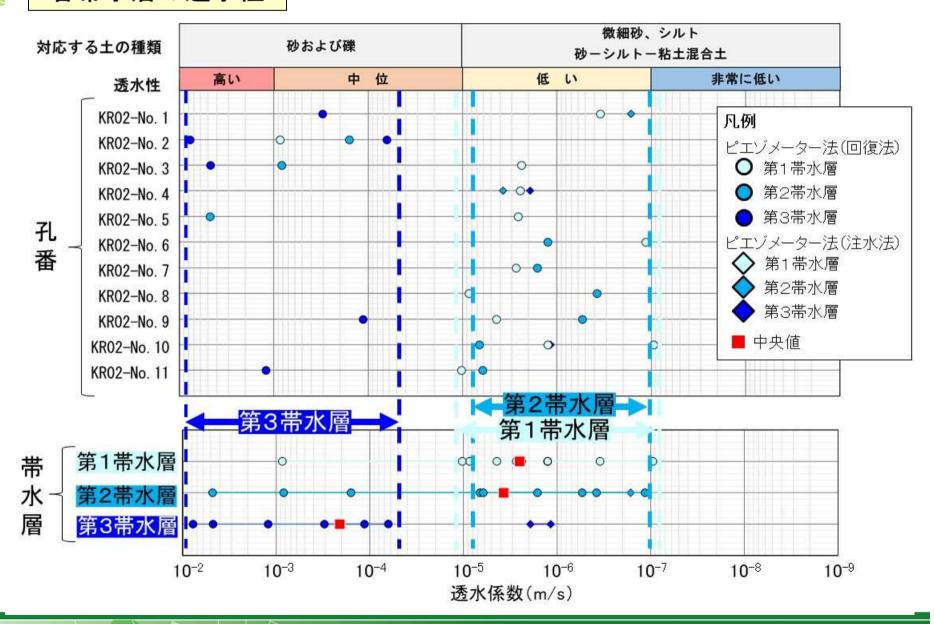

各地層の透水性

現場透水試験、室内透水試験結果

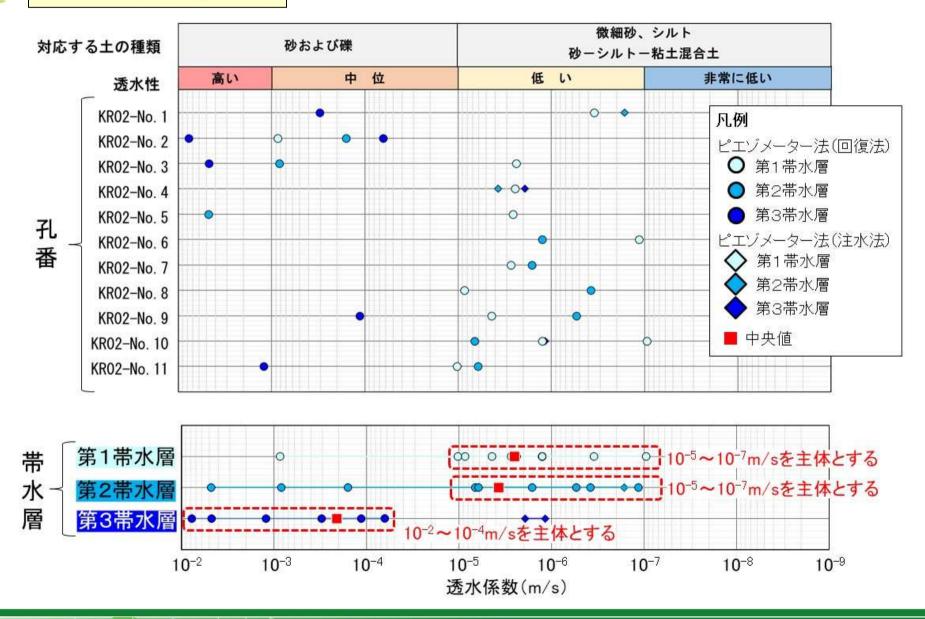
凡例


- 全データの中央値
- チューブ法の中央値
- ピエゾメーター法室内诱水試験の中央値
- ▼室内透水試験
- * 不飽和透水試験
- △チューブ法
- ◆ピエゾメーター法(注水法)
- ○ピエゾメーター法(回復法)

対応する土の種類 诱水性 旧淀江湖堆積物 沖積層 段丘堆積物 中期扇状地面堆積物 中期~古期大山噴出物 古期扇状地Ⅱ面堆積物 古期扇状地I面堆積物 火山灰質砂礫層 (日野川系) 溝口凝灰角礫岩 火山灰質砂層 (大山系) 火山灰質固結粘土層 安山岩質火砕岩 安山岩質火砕岩 (塊状部) 未区分火砕岩類


各帯水層の透水性

井戸設置後の現場透水試験結果


各帯水層の透水性

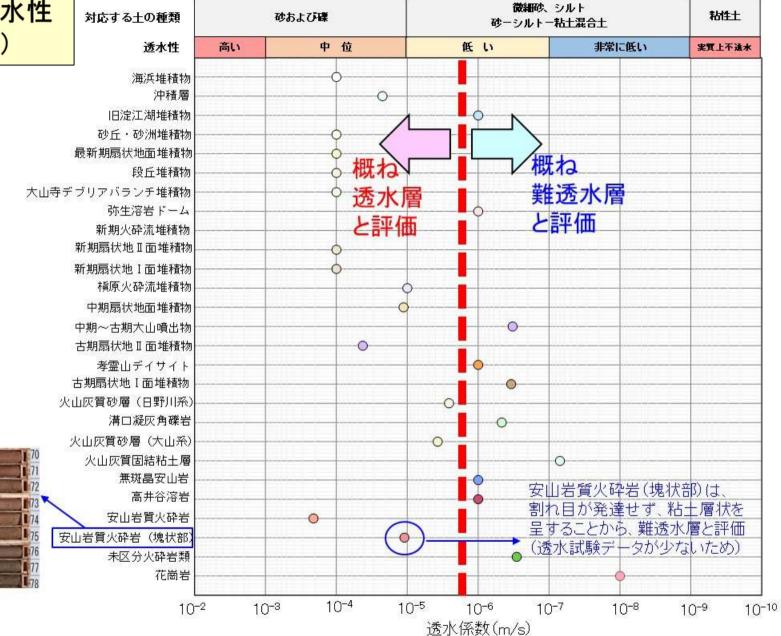
井戸設置後の現場透水試験結果

各帯水層の透水性

井戸設置後の現場透水試験結果

带水層区分•透水係数

地質時代	9	地際名	帯水陽	0		透水係数(m/s)	表水係數 (m/s) 根拠資料	根拠資料	
ACM DAIL	23	心度有	市小周	採用値	最大值	中央値	平均值	最小值	
Ph-Ph-		海浜堆積物	第1帶水層	1.00×10 ⁻⁴	1.00×10 ⁻³	1_00 × 10 ⁻⁴	1.00 × 10 ⁻⁴	1.00 × 10 ⁻⁵	・文献後の中央値
		沖積層	第1帯水層	2.24×10 ⁻⁶	1. 76×10 ⁻⁴	2. 24 × 10 ⁻⁵	6.86×10 ⁻⁵	1. 16 × 10 ⁻⁵	・現場透水試験、室内透水試験結果より、沖積層(全データ)の中央値
完新	ιш.	旧淀江湖堆積物	難透水層	1.00×10 ⁻⁶	1.00 × 10 ⁻⁵	1.00×10^{-6}	1.00 × 10 ⁻⁶	1.00×10^{-7}	文献値の中央値
		砂丘・砂州堆積物	第1帯水層	1.00×10 ⁻⁴	1.00×10 ⁻³	1_00 × 10 ⁻⁴	1.00 × 10 ⁻⁴	1.00 × 10 ⁻⁵	・文献値の中央値
		最新期間状地面堆積物	第1帶水層	1.00×10 ⁻⁴	1.00×10 ⁻³	1_00 × 10 ⁻⁴	1.00 × 10 ⁻⁴	1.00 × 10 ⁻⁵	・文献値の中央値
100		段丘堆積物	第1帯水層	1.00×10 ⁻⁴	1.00×10 ⁻⁵	1.00 × 10 ⁻⁴	1.00×10 ⁻⁴	1.00×10^{-5}	・文献値の中央値
		大山寺デブリアバランチ堆積物	第1帯水層	1.00×10 ⁻⁴	1.00 × 10 ⁻³	1_00 × 10 ⁻⁴	1.00 × 10 ⁻⁴	1.00 × 10 ⁻⁵	・文献値の中央値
		弥山溶岩ドーム	難透水曆	1.00×10 ⁻⁶	1.00×10 ⁻⁵	1.00×10^{-6}	1.00 × 10 ⁻⁶	1.00 × 10 ⁻⁷	・文献値の中央値
		新期火砕流堆積物	第1帯水層	1.00×10 ⁻⁶	1.00×10 ⁻⁴	1, 00 × 10 ⁻⁵	1.00 × 10 ⁻⁵	1.00×10^{-6}	・文献値の中央値
	後期	新期爾状地 11 面堆積物	第1帯水層	1.00×10 ⁻⁴	1.00×10 ⁻³	1, 00 × 10 ⁻⁴	1.00 × 10 ⁻⁴	1.00×10^{-5}	・文献値の中央値
	1	新期爾状地 1 面堆積物	第1帯水層	1.00×10 ⁻⁴	1.00×10 ⁻³	1, 00 × 10°4	1.00 × 10 ⁻⁴	1.00 × 10 ⁻⁵	・文献値の中央値
		續原火砕流堆積物	第1帯水層	1.00×10 ⁻⁶	1.00×10 ⁻⁴	1, 00 × 10 ⁻⁵	1.00 × 10 ⁻⁵	1.00×10^{-6}	・文献値の中央値
40		中期爾状地面堆積物	第1帯水層	1.13×10 ⁻⁶	2.18×10 ⁻⁵	1. 13 × 10 ⁻⁵	1.12×10 ⁻⁵	5. 47 × 10 ⁻⁷	・現場透水試験、室内透水試験結果より、中期原状地面堆積物(全データ)の中央値
第四		中期~古朋大山噴出物	難透水曆	3.27×10 ⁻⁷	7.49×10 ⁻⁷	3. 27 × 10 ⁻⁷	3.55×10^{-7}	1. 45 × 10 ⁻⁸	・現場透水試験、室内透水試験結果より、中間~古期大山噴出物(全データ)の中央値
5#	8	古期爾状地耳面堆積物	第1帯水層	4.25×10 ⁻⁶	5. 10 × 10 ⁻⁵	4. 25 × 10 ⁻⁵	3.24×10 ⁻⁵	3. 24 × 10 ⁻⁵	・現場透水試験、室内透水試験結果より、古期原状地Ⅱ面堆積物(全データ)の中央値
更		孝霊山デイサイト頭	難透水曆	1.00×10 ⁻⁶	1.00 × 10 ⁻⁵	1, 00 × 10 ⁻⁶	1.00×10^{-6}	1.00×10^{-7}	・文献値の中央値
新	E	古期爾状地上面堆積物	第1帯水層	3.43×10 ⁻⁷	7.43×10 ⁻⁶	3. 43 × 10 ⁻⁷	1.25 × 10 ⁻⁶	3.91 × 10 ⁻⁹	・現場透水試験、室内透水試験結果より、古期原状地!面堆積物(全データ)の中央値
144		火山灰質砂礫層 (日野川系)	第2帶水層	2.58×10 ⁻⁶	3.18×10 ⁻⁶	2.58 × 10 ⁻⁶	2.58×10 ⁻⁶	1.98×10 ⁻⁶	・現場透水試験、火山灰質砂礫層(全データ)の中央値
		溝口凝灰角礫岩	難透水曆	4.65×10 ⁻⁷	1.75×10 ⁻⁵	4.65 × 10 ⁻⁷	1.84×10^{-6}	2.85×10 ⁻⁸	・現場透水試験(ビエゾメータ法)、室内透水試験結果より、薄口凝灰角礫岩の中央値
	中期	火山灰賞砂層 (大山系)	第2帶水層	3.73×10 ⁻⁶	4.78×10 ⁻²	3.73×10 ⁻⁶	5.26×10 ⁻⁴	1. 64 × 10 ⁻⁷	・観測井戸設置後の現場透水試験結果より、第2帯水暦(全 <i>デー</i> タ)の中央値
		火山灰質爾結粘土層	難透水層	7.03×10 ⁻⁸	3.38×10 ⁻⁷	7. 03 × 10 ⁻⁸	1.03×10 ⁻⁷	2.59×10 ⁻¹⁰	・現場透水試験、室内透水試験結果より、全データの中央値
		無斑晶安山岩	難透水層	1.00×10 ⁻⁶	1.00×10 ⁻⁹	1.00 × 10 ⁻⁶	1.00×10 ⁻⁶	1.00×10 ⁻⁷	文献徳の中央徳
		高井谷溶岩	難透水層	1.00×10 ⁻⁶	1.00×10 ⁻⁵	1.00 × 10 ⁻⁶	1.00×10 ⁻⁶	1.00×10 ⁻⁷	・文献徳の中央徳
		安山岩質火砕岩	第3帯水層	2.10×10 ⁻⁴	7.73×10 ⁻¹	2. 10 × 10 ⁴	1.77×10 ⁻³	1. 17×10 ⁻⁶	・観測井戸設置後の現場透水試験結果より、第3帯水層(全データ)の中央値
		安山岩質火砕岩(塊状部)	難透水層	1.10×10 ⁻⁶	1.21×10 ⁻⁵	1. 10 × 10 ⁻⁵	1.10×10 ⁻⁵	9.81×10 ⁻⁶	・現場透水試験、室内透水試験結果より、安山岩質火砕岩(塊状部)(全データ)の中央値
	前期	未区分火砂岩類	難透水陽	2.87×10 ⁻⁷	5.84×10 ⁻⁴	2. 87 × 10 ⁻⁷	2.16×10 ⁻⁶	1. 15×10 ⁻⁹	・現場透水試験、室内透水試験結果より、未区分火砕岩類(全データ)の中央値
古第三	紀	花崗岩	難透水層	1.00×10 ⁻⁸	1. 00 × 10 ⁻⁷	1, 00 × 10 ⁻⁸	1.00 × 10 ⁻⁸	1. 00 × 10 ⁻⁹	・文献値の中央機


三次元水理地質モデルにおける各地層の透水係数については、 上記の採用値を初期値として与え、 現況再現解析(シミュレーション)の中で、 再現性が得られる透水係数への調整(チューニング)を行う予定です。

各地層の透水性 (採用値)

KR02-No.9-1

(GL:-65:10~-78:50m)

次頁参照

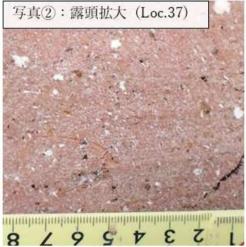
地表地質露頭情報⑥:安山岩質火砕岩(塊状部)

【特徴】

- ・露頭では塊状部が観察された。
- ・基質部は細粒で赤色から赤褐色を呈 する。
- ・比較的軟質だが、基質は緻密で密着 している。

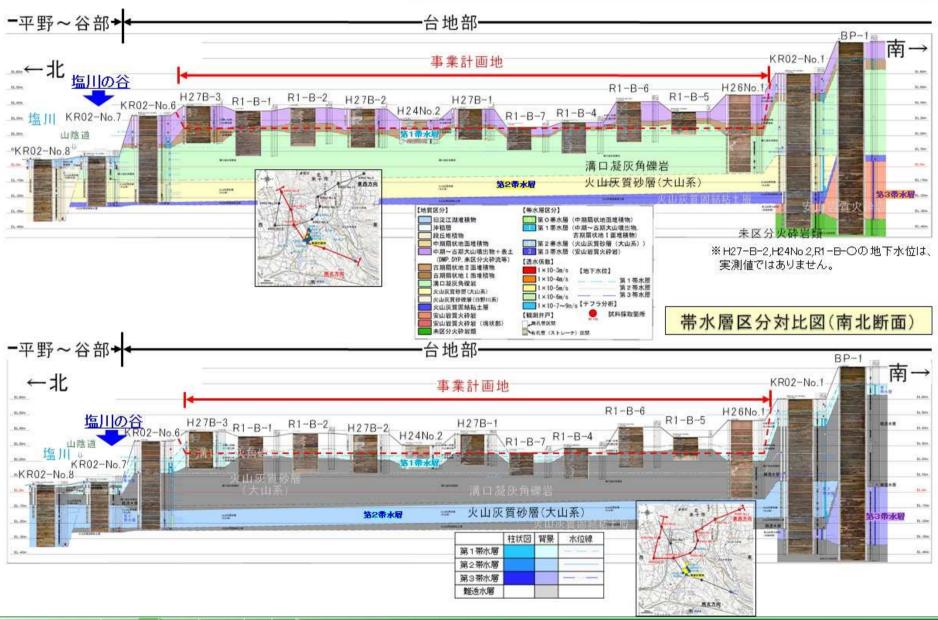
Loc.37の概要

		露頭				
76	原位置	島取県米子市建江町本宮、標音:219m 線査:35度25分16.34秒、経度:133度27分49.71秒				
	構成物	學拉				
5質	固結度	+ 固結~固結				
2.具	溶結度	非溶糖				
	色調	赤色~赤褐色				
	礫種	*				
	粒径	=				
片	形状	=======================================				
	量					
- 7	の他	全体的に密集で割れ目もなく罪法水				

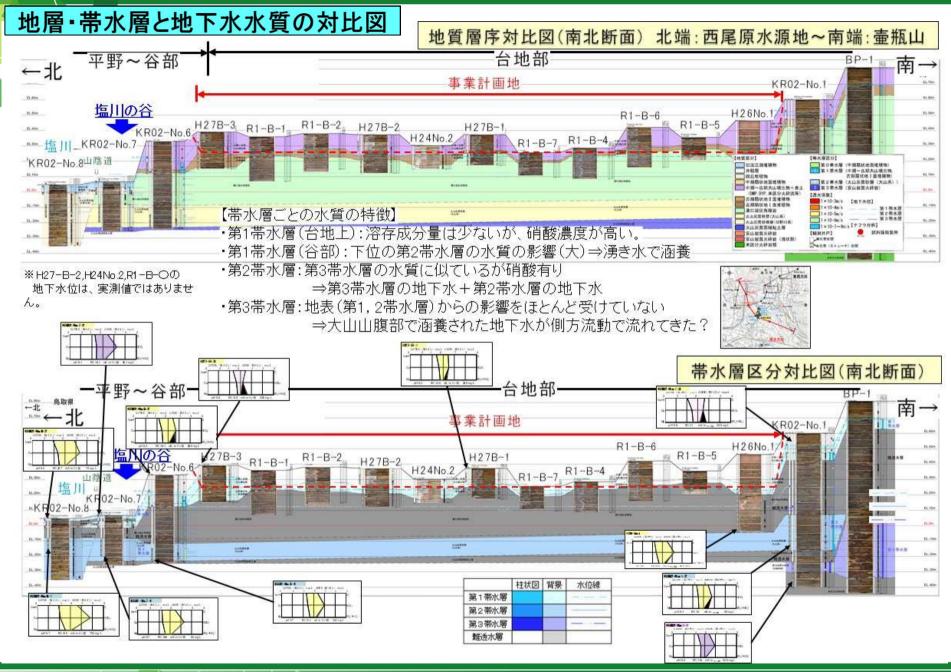


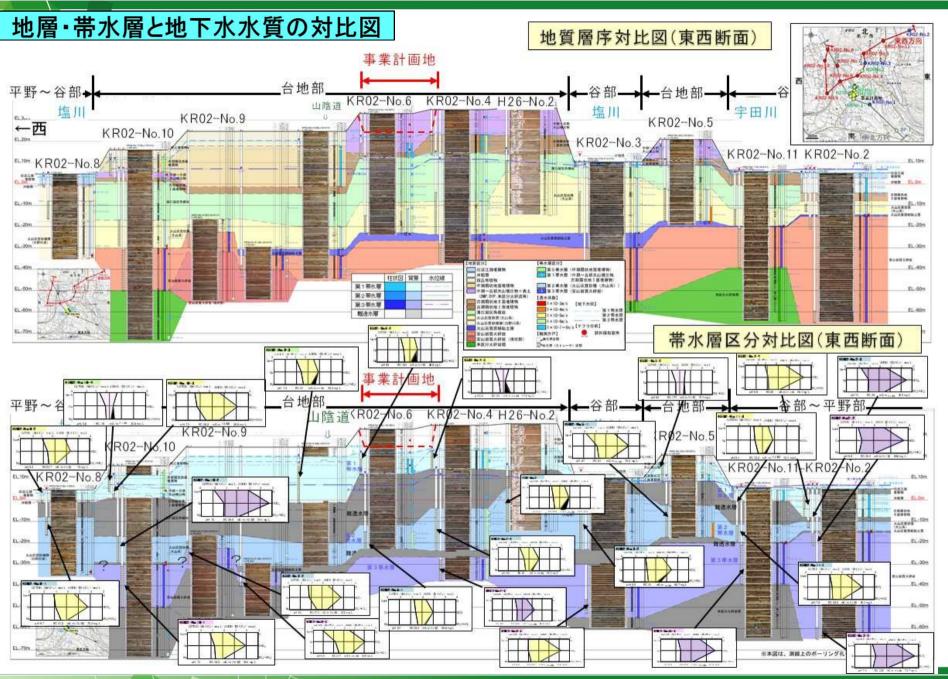
○:ボーリング調査地点位置、 ● ○:露頭位置 図中、丸印で示した地点において同質の地層を確認。

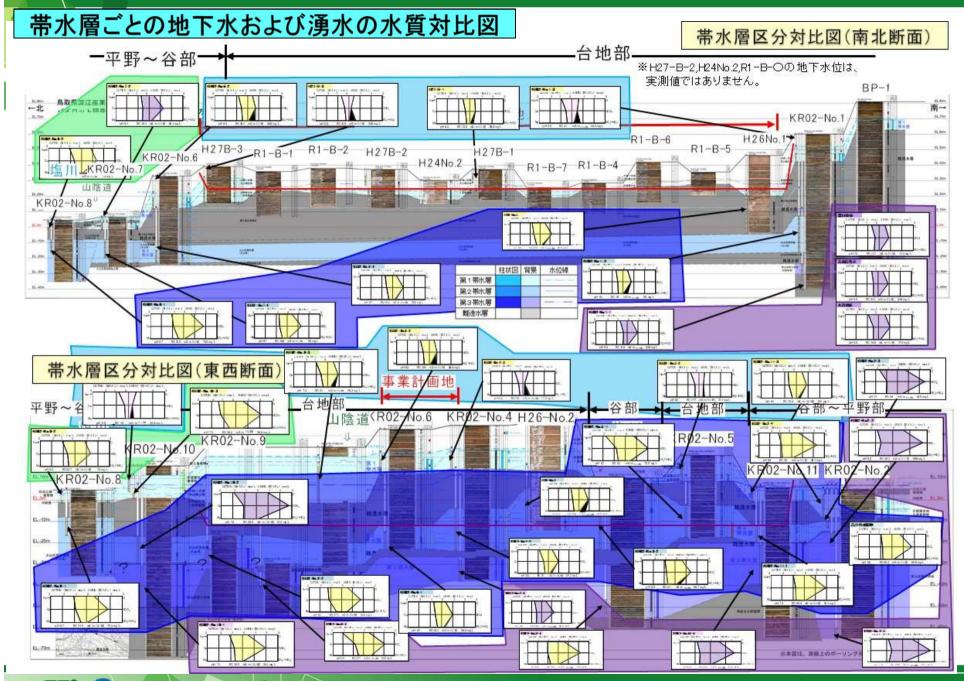
SDSBS:砂丘・砂州堆積物、Yath: 級新期頭状地面堆積物 K-Mi: 鬼界アカホヤ火山灰 (7.3Ka) , 0d:おどり火山砂 (23.34Ka) AT: 紛音弁沢火山灰 (29-26Ka) SK:三根木次幹石 (100Ka) DMP: 大山松江軽石 (130Ka), Hdp: 福谷軽石 (170Ka, 淀江畦石) 無関基安山岩 (480-450Ka) - 製山デイサイト (510-450Ks)


塊状無層理の火砕岩(凝灰岩)で、高温酸化により赤色~赤褐色を呈する。 比較的軟質で、ネジリ鎌で容易に削ることが出来る。緻密で割れ目も無く難透水性。

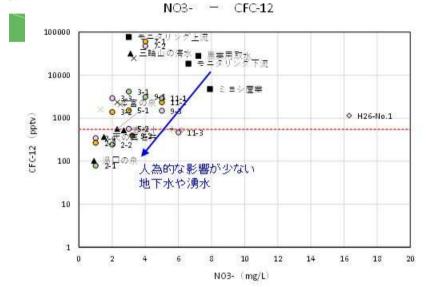
写真(3): ボーリングコア写真 (KR02-No.9-1:GL-65.10~-78.50m)

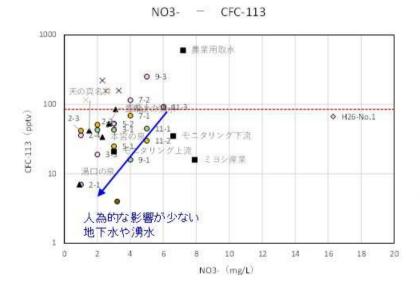

地層・帯水層と地下水水質の対比図

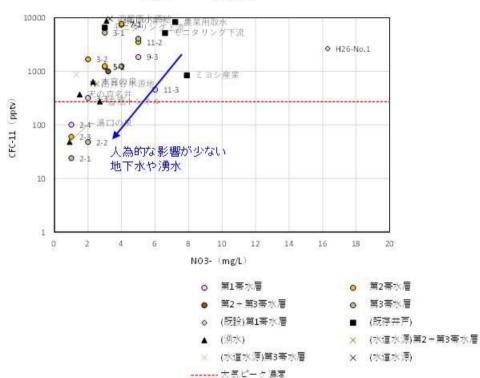

地質層序対比図(南北断面) 北端:西尾原水源地~南端: 壶瓶山



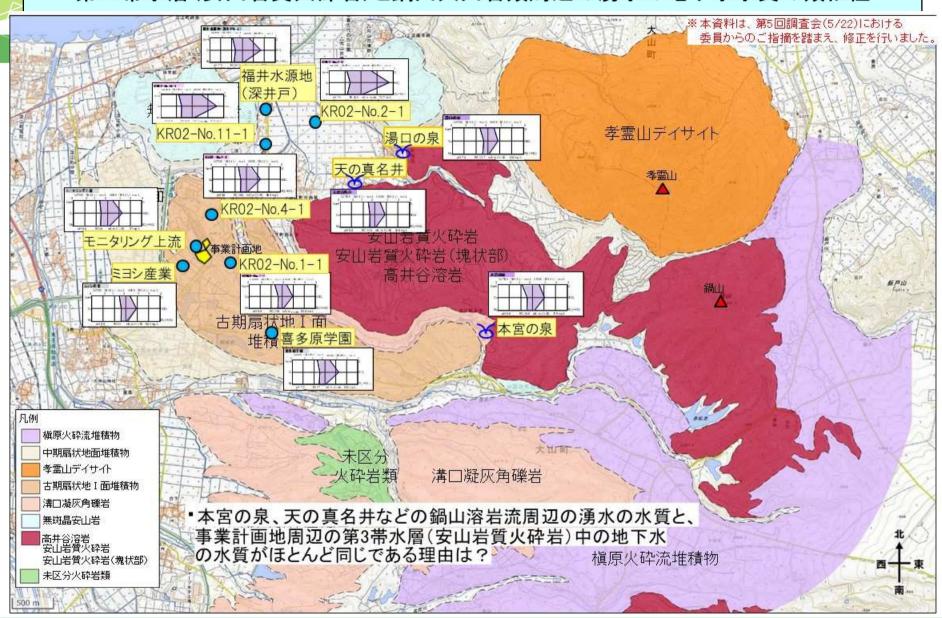
地層・帯水層と地下水水質の対比図 地質層序対比図(東西断面 事業計画地 台地部 平野~谷部▶ 谷部~平野部 山陰道 KR02-No.6 KR02-No.4 H26-No.2 KR02-No 9-1 宇田川 KR02-No.5 KR02-No.9-2 KR02-No.9-3 東→ ←西 KR02-No.10 KR02-No.11 KR02-No.2 EL10m KR02-No.8 ARRUS IRROS PARTERIE PARTE 溝口凝灰角礫岩 火山灰質砂層 第3带水屑 安山岩質火砕岩 E1.-40m 但沒沒想地積物 沖積層 段丘地時等 中期間状地高地積物 中期一方面大山坡出物+表土 第0番水陽(中期隔状地區地積物) 第1番水器(中期一古期大山噴出物 古郑层状地 1 直地積物 □ 第2等水陽 (火山灰質砂器 (大山系) ■ 第3等水陽 (安山総質火砕岩) 未区分火砕岩類 (DMP DVP 未区分少动地等) 【西水傳数】 古際扇状地目衝埋積物 1 × 10-3a/s 方期局状的 1 市場行物 柱状図 背景 水位線 1 × 10-4e/s 1 × 10-5e/s 1 × 10-6e/s 第1 茶水层 第2 茶水层 第3 茶水层 溝口被绞角彈洞 第1帯水屑 **東山原東新港(米山高)** 大山尼河砂碟県 山野川系 | I×10-7-9n/s [テフラ分析] 第2帯水層 火山灰質医绒粘土層 ● 政制部次銀術 [報期押押] 带水層区分対比図(東西断面) 安山岩質火砂岩 (環状部) 第3帯水屑 MARK (ALL-P) SM 未区分火砕岩類 難透水層 台地部 平野~谷部▶ -谷部~平野部 KR02-No.6 宇田川 KR02-No.5 EL 30% ←西 東→ KR02-No.10 KR02-No.3 EL 20m KR02-No.11 KR02-No.2 £1.10n 中期扇状地面堆積物 164 HEN ELOW Amplitude THREE P. 就进水池 第2带水图 £1,-20e 山皮弄圆品性中 £1,-30% 第3带水屑 EL-400 £1,-50m

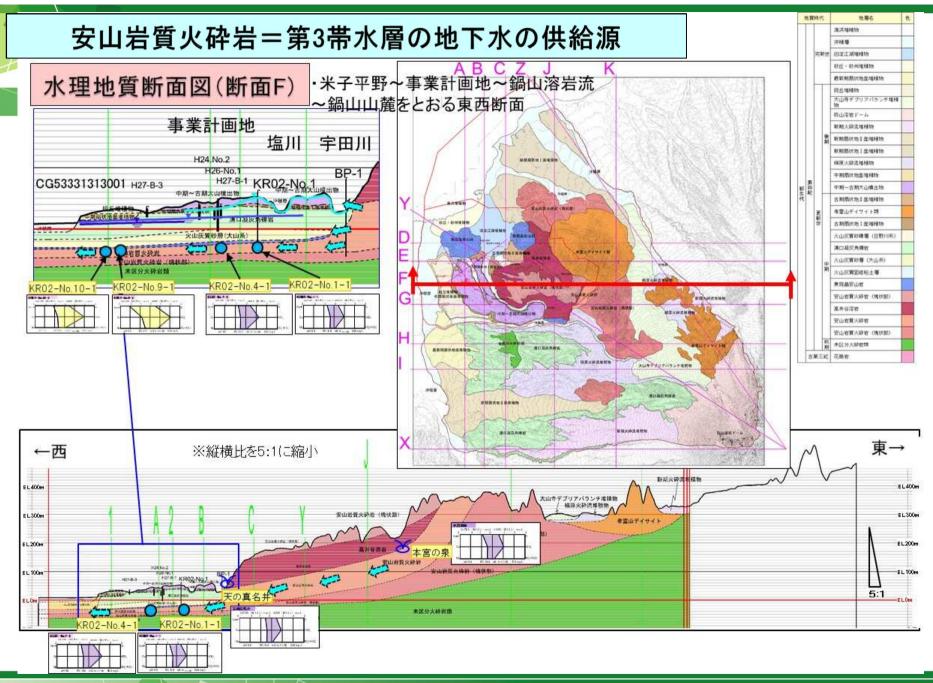

EL-70m ※本因は、測線上のボーリング孔を等間隔に配置し作成した





硝酸イオン濃度とCFCsの対比

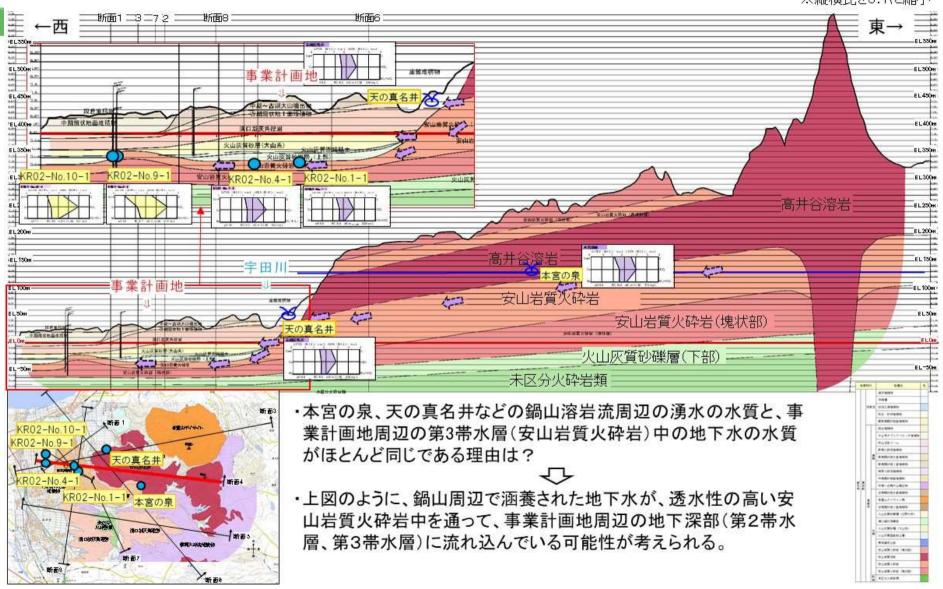


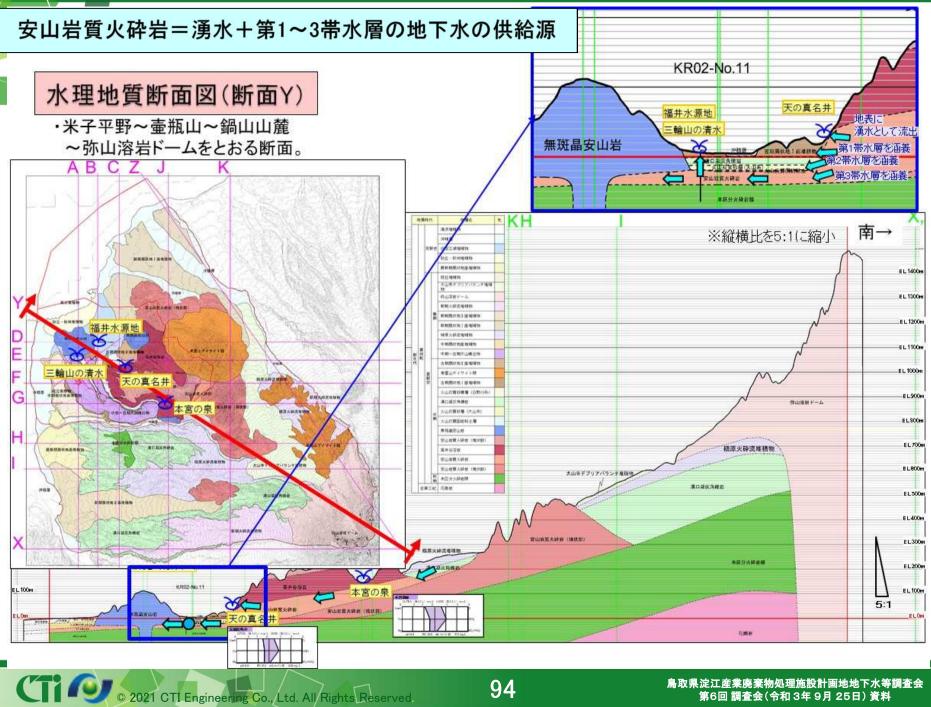


硝酸イオン および CFCsは、 いずれも人間の活動によってもたらされた物質であり、 両者の濃度には、高い正の相関関係がある。

すなわち、観測井戸: No.2-1,2,3,4で採取された地下水や、 湯口(ゆぐい)の泉、天の真名井、本宮の泉の湧水は、 本調査地域の中で、人の活動の影響を最も受けていない ということが出来る。

第三帯水層(安山岩質火砕岩)と鍋山火山岩類周辺の湧水の地下水水質の類似性

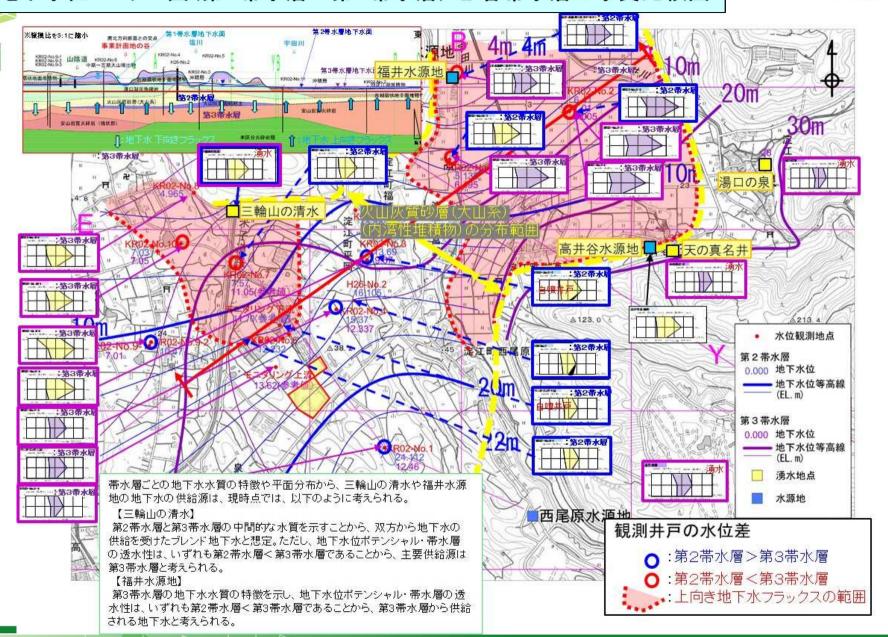




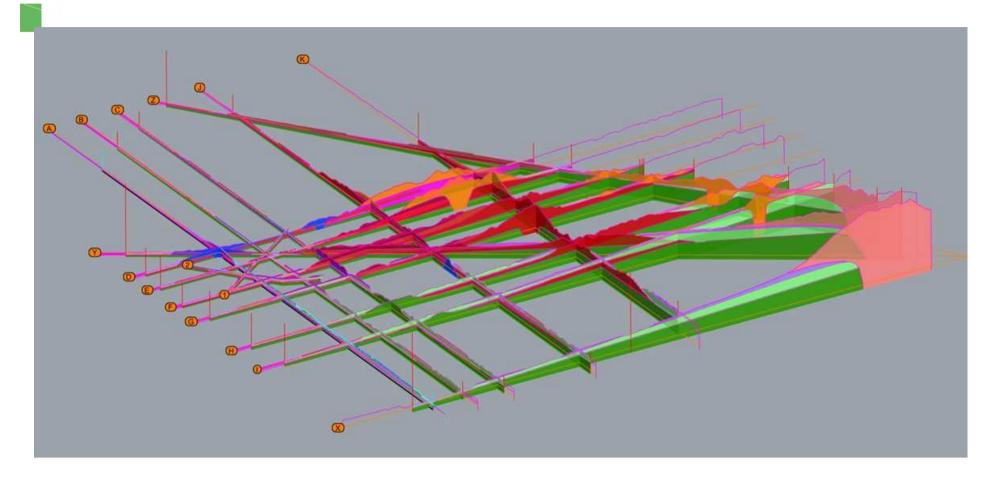
安山岩質火砕岩=第3帯水層の地下水の供給源

※本資料は、第5回調査会(5/22)における 委員からのご指摘を踏まえ、修正を行いました。

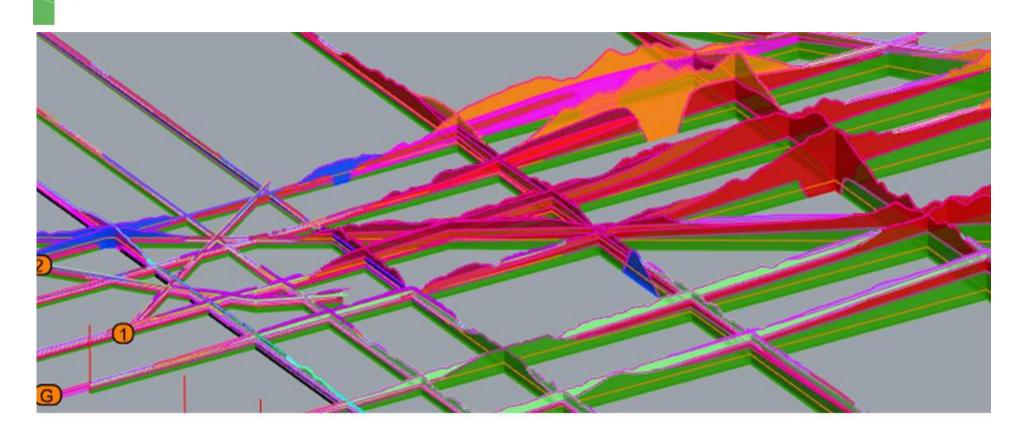
※縦横比を5:1に縮小



94


地下水位コンタ一図(第2帯水層+第3帯水層)と各帯水層の水質比較図

※想定図


5. 地質三次元モデル化

▶地質パネルダイヤグラム

縦横比 1:1

▶地質パネルダイヤグラム

縦横比 1:1