「鳥取県水産試験場・北海道大学水産学部 共同研究」

隠岐諸島周辺海域におけるスルメイカ卵塊およびふ化幼生の分布

健¹•桜井 泰憲²•氏 良介¹•山本 潤²•渡辺 秀洋³•増田 紳哉¹ 志村

Distribution of Egg-mass and paralarva of the common squid Todarodes pacificus near the Oki Islands

Tasyoshi Shimura, Yasunori Sakurai, Ryosuke Uji, Jun Yamamoto,

Syuyo Watanabe and Shinya Masuda

日本周辺に生息するスルメイカ(Todarodes Steenstrup,1880) アカイカ科 pacificus. Ommastrephidae に属し,発生季節別に,秋,冬群, および春・夏生まれ群に便宜的に分けられている¹⁾. このうち、秋、冬生まれ群が漁業の対象となり、高 水準期と低水準期が 10 年単位で入れ替わる大きな 変動を繰り返している^{2,3)}.鳥取県においても、本種 は重要な水産対象種として位置づけられ、水揚げ量 の変動(図 1)を予測し、早い段階でスルメイカ漁 業者関係者に情報を提供することが課題となってい る.これまで、スルメイカ資源の変動、特に漁獲量 の減少は、過度の漁獲圧が原因と考えられてきた ^{4,5,6)}.最近では,再生産—加入海域における短・中 長期の気候変化に伴う物理・生物的環境の海洋環境 の変化が、スルメイカを含むアカイカ科の資源変動 の一因であると注目されている 2,3,7,8,9). しかしなが ら、気候変化とスルメイカ資源の変動との関係を明 らかにしてその資源変動を予測するには、産卵から 卵・ふ化幼生の生残過程を含めた再生産機構の解明 が必要となる.

図1 鳥取県境港におけるスルメイカの水揚量

再生産海域におけるスルメイカ生活史初期につい ては、卵が採集されないために、リンコトウチオン (釣り鐘)型幼生と呼ばれるふ化幼生の分布調査に より調べられてきた¹⁰⁻¹⁵⁾.このふ化幼生の鉛直分布 に関して,海表面から75mまでもしくは100m以浅 に分布し水深 20~50m に幼生の分布密度が高いこ と^{10,16,17)}, 日周鉛直移動が少ない可能性のあること 10,16) が報告されている. このようにネット類で採集 できるスルメイカふ化幼生の知見は得られているも のの,再生産海域における産卵場の特定,産卵され た卵の存在や、その後のふ化幼生の生残と、その海 洋環境条件など未知な部分が多い. アカイカ科の再 生産特性については、スルメイカとカナダイレック スの2種で飼育実験による解明が行なわれている. それによると、アカイカ科は、弱い沈降特性を持つ 大型の透明ゼリー状卵塊を産出すること^{18,19)},産出 卵塊の生残とふ化の成功には、ふ化まで産出卵塊の 形状を維持しなければならないこと、スルメイカの 産出卵塊からのふ化は約1週間程度であり、ふ化幼 生は海表面に向かって遊泳すること¹⁸⁾,さらに,卵 とふ化幼生の生残適水温帯は 15-23℃20) であること などが明らかにされている. これらの飼育実験の結 果から, Sakurai et al.²⁾は、スルメイカの成熟雌個体 が表層から中層の暖水内で卵塊を産出し、産出され た卵塊はふ化まで躍層付近に留まり、ふ化後の幼生 は表層に向かって遊泳するという再生産海域におけ るスルメイカの再生産機構の作業仮説を提唱してい る. さらに、水温場を中心とした日本周辺のスルメ イカ再生産環境の季節的・経年的変化、特に海洋環 境の寒冷―温暖のレジームシフトがスルメイカの資 源変動と関連している可能性を見いだしている³⁾.

これらスルメイカの再生産機構を通した資源変動

メカニズムの解明のためには、スルメイカが産出す る卵塊が、どのような水深や密度躍層などの海洋構 造の中で存在するかを調べ、その後のふ化幼生は成 長に伴ってどのように分布しているかを明らかにす る必要がある、しかしながら、従来の幼生採集法で は,幼生分布の精査は難しく,卵塊の探査について は水中映像を用いた新しい観測方法が必要となって いた.そこで、本研究では第一鳥取丸(図 2)を有 する鳥取県水産試験場と北海道大学が共同して調 査・研究を行った. さらに、本研究が対象とした秋 季の隠岐諸島周辺は、産卵後の衰弱した雌イカが底 引き網漁業で採集されていること²¹⁾,ふ化直後の スルメイカ幼生が高頻度で出現すること¹⁵⁾,飼育実 験によって確認された"座る"という産卵前行動¹⁸⁾ をするための陸棚・陸棚斜面が発達しているとの理 由から,再生産が行われている可能性が高く本研究 に適した海域となっている.

図2 第一鳥取丸の概略図

資料と方法

調査の概要

本研究のフィールド調査は,1998-2003 年の秋生 まれ群産卵期中(9-12 月:¹⁾)の11月に試験船第一鳥 取丸(199トン)を用いて隠岐諸島周辺海域で実施 した(図3).観測は,鳥取県水産試験場と北海道大 学水産学部・水産科学研究科および同大北方生物圏 フィールドセンターから数名が乗船して行った(表 1-1,2). 初年度の 1998 年は,観測項目とその手順 の確認のために 11 月中旬に約一週間の予備的な調 査であったが,本格的な調査が組まれた 1999-2003 年は,11月の上旬から下旬の 3-4 週間の観測期間を 設定して実施した.しかしながら,本調査期間中は, 移動性の低気圧が通過したために荒天が多く,実施 計画よりも大幅に縮小した観測となった.

本調査では、スルメイカの再生産機構を明らかに するために、Multiple Opening/ Closing Net and Environmental Sampling System²²⁾; 以下 MOCNESS を 用いたスルメイカ幼生深度別採集と、水中テレビロ ボット (Remotely Operated Vehicle; 以下 ROV) によ るスルメイカ産出卵塊の水中探査と観察, さらに、 CTD を用いた水温・塩分の測定を実施した(表 2, 図 3).以下に、各観測の詳細を記載する.

調査項目の詳細

スルメイカ幼生の採集

本研究では,成長に伴うスルメイカ幼生の鉛直分 布の変化を調べるために,一度の曳網で多層の試料 採集が可能な網口面積 1m²タイプの米国 BESS 社製 の MOCNESS (図 4) により幼生を採集した. 調査 網地には、ふ化直後の幼生採集が可能な 0.333mmの メッシュサイズのネット²³⁾を用いた.スルメイカ 幼生は, 表層から水深約 100m まで分布し¹⁰⁾, その 昼夜移動は少ない可能性があると報告されている ¹⁶⁾. そのため、1998-2002 年の調査では、海表面(0m)、 海表面-25m, 25-50m, 50-75m, 75-100m を目安とし た5層について昼夜に関係なく曳網をした(海深が 100mよりも浅い海域については,75mまでの4層, もしくは50mまでの3層について実施した).また、 2003年の調査では、卵塊がふ化まで滞留すると予想 される躍層付近おけるふ化直後の幼生の水温に対す る遊泳活性と,混合層,混合層下部および水温躍層 内の幼生の分布密度変化を調べるために、混合層下 部と水温躍層内との深度(海表面水温からそれぞれ 3℃,1℃低下した水深),および,その上層の表層混 合層について幼生を採集した.

図3 共同研究調査実施海域と観測項目(○:CTD,●:CTD, MOCNESS, ●:CTD, MOCNESS, ROV)

表 1-1 調査期間と乗船調査員

年	調査期間(土・日曜日を除く)	乗船研究者
1998	11月 16 ~ 20日	増田・氏・桜井・宮下・山本
1999	11月 $1 \sim 19$ 日	増田・氏・桜井・宮下・山本
2000	11月 $\stackrel{6}{-}$ ~ 22日	増田・氏・桜井・山本・志村
2001	11月 $\frac{7}{5} \sim 30$ 日	増田・氏・志村・桜井・山本・洲崎
2002	11月 $\frac{5}{10} \sim 22 日$	渡辺・志村・桜井・山本
2003	11月 ~ 28日	志村・桜井・山本・洲崎

表 1-2 共同調査乗船調査員とその所属機関

調査員	
増田 紳哉	鳥取県水産試験場
氏 良介	鳥取県水産試験場
渡辺 秀洋	鳥取県水産試験場
志村 健*	鳥取県水産試験場
桜井 泰憲	北海道大学大学水産学部・大学院水産科学研究科
山本潤	北海道大学北方生物圏フィールド科学センター
洲崎 暁史	北海道大学大学院大学院水産科学研究科

*2000年は北海道大学水産学部

表 2 1998-2003 年に実施した各観測項目の実施点数

年	CTD	MOCNESS	ROV
1998	2	2	2
1999	17	14	5
2000	23	22	8
2001	21	21	6
2002	9	9	4
2003	16	15	4
Total	88	83	29

図4 スルメイカ幼生採集に用いたMOCNESS (BESS-1), 船上(左図)と観測の様子(右図)

水中ロボットによる卵塊探査

スルメイカ産出卵塊の探査は、ROV(Expert NOVA System: (㈱広和社製, 図 5) を用いて実施した. ROV による観測は、主に隠岐諸島の北西から北部海域と 隠岐諸島南東の海域の陸棚上とその縁辺域で実施し た(図3). スルメイカの産出卵塊は, 直径約80cm-1m の透明な球状の物体で緩やかな沈降特性を有し¹⁸⁾, 中性浮力となる躍層付近まで沈降して密度躍層付近 に滞留すると推定されている^{2,19)}.そのため、卵塊 探査を始める前には、CTD を用いて躍層の深度を確 認し、さらに ROV の潜行時には、ROV 搭載の水温 計と水深計によるデータを船内のモニター画面で確 認して密度躍層の深度を中心に ROV を鉛直方向, 水平方向に操作して探査した.また、これまで北海 道大学付属練習船で実施してきたスルメイカ産出卵 塊卵塊の探 ROV の潜航深度における流れ場の上流 側にカメラを構えて、その前を通過する物体の映像 を記録する方法であった.この方法では、卵塊を観 察できたとしても、カメラの前を通過した透明な大 型の物体であることの視認にとどまるため、その実 際の大きさやスルメイカの卵塊であるという確認は 困難であった. そこで本調査では, 第一鳥取丸に装 備のパラシュート・アンカーをもちいて、船を表層 流と同じ流速・流向に移動させ,船体と水中の ROV との圧流差を少なくするように実施した(図 5:右 図).

海洋観測

MOCNESS と ROV によるスルメイカ幼生採集点 および卵塊探査点において,メモリー式 CTD (AST-2016:アレック電子社製)を用いて,水深 300mまで(海深が300m以浅の場合は海底直上まで) の水温・塩分を測定した.

プランクトン試料の処理

MOCCNESS によって採集したプランクトン試料 は、船上で直ちに 4%海水ホルマリン水溶液で固定 し、6時間後に50%イソプロピルアルコール水溶液 に置換し保存した.これらの試料を研究室に持ち帰 った後、頭足類幼生を選別し、奥谷²⁴⁾、沖山²⁵⁾の 分類基準に基づいてスルメイカ幼生を同定した.そ の後、スルメイカ幼生の外套長(Mantle Length;以 下 ML) を測定(損傷のある幼生は、損傷の無い幼 生と比較し、その MLを推定し、1mm 範囲ごとにサ イズ区分した). なお、本研究では、触腕が未だ分 離していないリンコトウチオン期幼生(paralarva) ²⁶⁾を対象とした.また、人工授精によって得られた ふ化幼生のMLは、約0.95mmと報告されており²⁷⁾、 ML1mm 未満の幼生はふ化直後の幼生として扱った.

図5 スルメイカ卵塊探査に用いたROV(KOWA Expert NOVA: 左図)と卵塊探査の模式図(右図).船 体とROVの漂流差を小さくするためにパラアンカーを用いた

結果

幼生採集時の海洋環境

曳網層中の3深度(海表面, 50m, 100m 深)を用 いて、観測時における調査海域がスルメイカの卵塊 とふ化幼生の生残に適した水温環境であるかを調べ た(表3).6年の調査を通した各水深の平均水温は、 海表面水温(以下, SST)が19.9℃(標準偏差1.1), 50m と 100m 深では、それぞれ 19.8°C (同 1.1)、 17.2℃(同 2.1)であり,水温範囲は,各水深で 18.9-22.5℃, 17.1-22.5℃, 7.6-21.2℃の範囲にあった. 飼育実験によるスルメイカふ化幼生と卵の生残適水 温(15-23℃;²⁰⁾)よりも高い水温の水塊は各水深で 認められなかったが、2000年と2001年の100m深 において、15℃未満の水塊がそれぞれ1点存在した. これらのことから、本調査時における幼生採集層は、 ほぼ全域がスルメイカの卵塊とふ化幼生の適水温内 にあったと考えられる.次に、上記3深度における 水温の水平分布について(観測範囲の狭かった1998, 2002 年を除く), 最初に SST と 50m 深から注目する と(図 6-1,2), 各年に共通して両深度間で水温分布は 類似した特徴を示し,調査海域の対馬暖流の上流側 に相当する隠岐海峡、隠岐諸島の南西域の水温が相 対的に高い年(1999, 2001, 03年), 隠岐諸島周辺 海域が広く 20℃以上の水塊に覆われている年(2000) 年),冷水を中心とした水塊が隠岐諸島の北方または

北東域に存在する年 (1999, 2000 年) が認められる. 100m 深の分布では(図 6-3), 隠岐諸島北東域 (1999 年),同北西域(2000 年),同東方域(2001 年)に冷水を 中心とした水塊が存在し,2000,01 年ではその中心 が生残適水温より低い 15℃以下となっている.また, 2003 年には隠岐海峡の入り口付近に 21℃以上の暖 水を中心とした水塊が分布している(図 6-3).

6年の調査で共通して実施された隠岐諸島南東域 の陸棚上の水温水平分布について、同様に SST と 50m からみると, 1999, 2000 年では, ほぼ全域が 20℃以上の水塊に覆われているのに対し、2001、03 年では, 隠岐海峡の出口付近の水深 100m 深付近の みに 20℃以上の水塊が存在している. 1998 年は観測 点が少ないが、両深度で20℃以上の水塊がみられな いことから, 1999, 2000年よりも低温で, 2001, 03 年に近い水塊配置であったと推定される. 2002年は, 隠岐海峡出口付近においても, 両深度で 20℃以上の 水塊が分布していないことから、調査期間でもっと も低温な年であったと推察される(図 6-1,2). 100m 深の水温分布では、1998年、2002年、03年は、観 測範囲が狭く分布の特徴をつかめないが,1999,2000 年,01年の隠岐諸島の北東,北方および東方に冷水 域が存在している.

これらのことから、本調査海域は、ほぼ同時期の 観測においても水温、水塊配置が年によって異なっ ていることが認められる.

表 3 1998-2003 年の調査における海表面, 50m, 100m 深の平均水温(℃), カッコ内は, 標準偏差, 最高と最 低水温(℃)を示す

Year	Mean Temperature (SD, MinMax.)							
		Surface		50m		100m		
1998	19.3	(0.0)	18.6	(0.4, 18.4-18.9)	15.5	(0.1,15.4-15.6)		
1999	20.8	(1.3, 18.1-22.5)	20.7	(1.3, 18.0-22.5)	18.2	(1.9,15.0-20.5)		
2000	20.3	(0.4, 18.9-20.8)	20.1	(0.7, 17.1-20.8)	16.0	(2.3, 7.6-17.9)		
2001	19.7	(0.8, 18.3-20.9)	19.6	(0.9,17.9-20.9)	17.2	(2.1,12.8-20.3)		
2002	18.4	(0.4, 18.0-19.2)	18.3	(0.4, 18.0-19.1)	17.6	(0.9,15.9-18.3)		
2003	19.8	(1.0, 17.8-21.2)	19.5	(1.1, 17.5-21.2)	18.2	(1.6,16.0-21.2)		
Overall	19.9	(1.1, 18.9-22.5)	19.8	(1.1, 17.1-22.5)	17.2	(2.1, 7.6-21.2)		

図 6-1 1998-2003年調査時における海表面水温(℃)水平分布.

図 6-2 1998-2003年調査時における50m深水温 (℃) 水平分布.

図6-3 1998-2003年調査時における100m深水温 (°C) 水平分布.

スルメイカ幼生の出現状況

本調査の6回の調査で83点のMOCNESSによる 採集を行い,そのうち76点で,総計1635個体のリ ンコトウチオン型のスルメイカ幼生を採集した(表 4).ふ化直後と考えられるML1mm 未満の幼生は, 145個体採集され(幼生総数の9%),1999,2000, 2001年の3年のみで出現し,躍層付近の遊泳活性に 関する調査を計画していた2003年では採集するこ とができなかった.ML1mm台とML2mm台は,採 集数がほぼ同数の557,574個体でそれぞれ,幼生総 数の35%,同34%,3mm以上幼生は,357個体が 採集され,同22%であった.

幼生の鉛直分布

幼生の鉛直的な分布特性を明らかにするため,同 ーの採集方法で曳網した 1998-2002 年の資料を用い て日周鉛直移動の有無について調べた.昼夜の別は, 出没の時刻を用い(昼間;09:30-16:55,夜 間;17:15-02:49),海表面から水深 100m までの5層に ついて曳網した点の幼生の重みつけ分布深度

(Weighted Mean Depth ;以下 WMD, WMD= Σ 各層に おける幼生分布密度 x 曳網層中心深度 / 各層にお ける幼生分布密度)を比較した.その結果,すべて のサイズにおいて昼夜の WMD に差は認められず

(表 5), スルメイカ幼生は日周鉛直移動しないか, したとしても大きな移動はしないと考えられる.そ こで,昼夜に関係ない WMD を用いて,幼生のサイ ズと WMD との関係を調べると,両者には正の相関 関係が認められた(図 7; WMD(m) =15.4 + 9.4xML Size (mm); p=.04, r=0.96).さらに,WMD は,幼 生のサイズ間で有意な差を示し(p<0.001,

F=18.2,One-way ANOVA,), ML1mm 未満と ML2mm 以上, ML1mm 台と ML3mm 以上とのサイズで,大 きなサイズの幼生は,小さなサイズの幼生よりも有 意に深かった(それぞれの比較で p<0.01, Scheffe 多 重比較検定).これらのことは,スルメイカ幼生は成 長に伴って,徐々にその分布深度を深くすることを 示している.また,昼夜に関係ない幼生の鉛直的な 密度変化は,それぞれのサイズで単峰型を示し,幼 生全体では 25-50m 層, ML1mm 未満は 0-25m 層, ML1, 2mm 台は 25-50m 層, ML3mm 以上では 50-75m に出現し,WMD の変化と同様にサイズが大きくな るにつれて深くなる傾向が認められた(図 8).

次に,幼生の混合層と水温躍層における分布密度 の差異を明らかにするために,同一の曳網方法で行

った1998-2002年のデータを用いて外套長別に各層 における幼生の分布密度について調べた.本解析で は, 混合層深度(以下MLD; Mixed Layer Depth)を 海表面水温から1℃低下した水深とし,混合層が最深 の曳網水深よりも深い場合(MLDが100m以深の場 合),海底まで混合が達している採集点は解析から除 外した. MLDが或る曳網層内に存在する場合, その 深度分を上層(混合層)と下層(水温躍層)との密 度に比例配分した.また,混合層を海表面とその下 層に区別し、成長に伴う海表面の幼生分布特性の変 化も調べた. その結果, すべてのサイズで混合層内 の密度が最も高く(表6)、すべてのサイズで3層間の 密度に有意な差が認められた(p=0.001 or <0.001, Kruskal-Wallis検定,表6). 外套長別にみると, ML1mm未満の幼生は、海表面と混合層との分布密 度に差は認められないが、混合層内の密度は躍層内 よりも大きく(p<0.001, Dunn多重比較検定, 表6), 海 表面から混合層にかけて分布すると考えられる. こ れに対して,ML1mm以上の幼生は,混合層内の密 度が、海表面、躍層内よりも高いことから(p<0.05 or <0.001; Dunn多重比較検定,表6),幼生は,混合層を 中心に分布することを示している. 2003年では、混 合層(海表面を含む)と混合層深度(以下, MLD; 海表面水温より1℃低下した水深),水温躍層内(以 下, 躍層;同3℃低下した水温)における幼生分布に ついて調査した結果(混合層が海底まで達していた 点を除く),いずれのサイズにおいても混合層内の密 度が最も高く(表7),その分布密度に有意な差が認 められた(Kruskal-Wallis検定, Dunn 多重比較検定, 表7). サイズ別にみると, ML1, 2mm台の幼生は, MLDと躍層内との密度に差が無いが,混合層内の密 度がMLDよりも有意に大きい. これに対して, ML3mm以上の幼生では、混合層とMLD、MLDと躍 層内との密度に差は認められなかった(混合層内は, 躍層内よりも有意に大きい). これらのことから, ML1,2mm台の幼生は,混合層内に卓越して分布し, 3mm以上になると、混合層内での分布密度は相対的 に高いが、混合層から下層に行くにしたがって次第 にその密度が減少すると考えられる.

表 4 1998-2003 年の各年における曳網点数,幼生出現点数および ML (mm)別の幼生の採集数. 曳網点数のカ ッコ内は幼生出現採取点数

Year	Num.	of Tow		Num of Paralarvae at each Mantle Length size (mm)					
	(FOSITIVE SITE)		ML<1	1 <u><</u> ML<2	2 <u><</u> ML<3	ML <u>></u> 3	Unknown	Total	
1998	2	(2)	0	7	11	8	0	26	
1999	14	(12)	88	160	99	94	0	441	
2000	22	(21)	5	82	103	62	0	252	
2001	21	(19)	52	283	287	132	2	756	
2002	9	(9)	0	7	14	13	0	34	
2003	15	(13)	0	17	61	48	0	126	
Total	83	(76)	145	557	574	357	2	1635	

表5 1998-2002 年に採集された外套長(ML)別の昼夜別の重み付け平均深度(WMD)の比較. カッコ内は標準 偏差を示す. P 値は昼夜 WMD の t-検定から算出

MI (mm)		t-test		
	Day	Night	Day & Night	P-value
ML< 1	17.9 (7.8)	23.1 (15.5)	20.1 (11.6)	0.34
$1 \le ML \le 2$	31.8 (12.7)	32.0 (14.6)	31.9 (13.2)	0.96
$2 \leq ML < 3$	38.8 (13.2)	44.7 (19.2)	41.5 (16.3)	0.25
ML <u>></u> 3	51.6 (15.2)	44.8 (22.1)	48.6 (18.6)	0.22
Overall Size	40.3 (12.6)	43.1 (18.6)	41.5 (15.4)	0.81

図7 1998-2002 年に採取されたスルメイカ幼生の外套長(ML)別, 重み付け深度(WMD) とその標準偏差(エ ラーバー). 回帰直線式の ML Size は, ML1mm 未満から 3mm 以上までのそれぞれのサイズにおける ML の平均 値

図8 1998-2002年に採取されたスルメイカ幼生の外套長(ML)別, 鉛直密度(ind./10³m³)変化とその標準偏差(エラーバー)

表 6 1998-2002 年に採集された幼生の海表面(S),表層混合層(M;海表面除く)と水温躍層内(T)におけ る外套長(ML)別幼生分布密度(ind./10³m³)の比較. P 値は Kruskal-Wallis 検定,各分布深度の多重比較は Dunn 多重比較検定による

MI (mm)	Number of	Mean MLD(m) -	Mean Density (ind./10 ³ m ³)				Dupp's test
WIL(IIIII)	Paralarvae (Stations)		S	М	Т	F-value	
ML< 1	117 (17)	73.1	7.9	8.8	0.7	0.001	$S = M, M > T^{*2}$
$1 \le ML < 2$	290 (28)	71.3	4.6	17.4	1.4	< 0.001	$S < M, M > T^{*2}$
2 <u><</u> ML<3	294 (31)	71.5	1.3	15.6	3.6	< 0.001	$S \stackrel{*^2}{<} M, M > T \stackrel{*^2}{}$
ML <u>></u> 3	194 (34)	72.4	0.4	8.9	5.0	< 0.001	$S \stackrel{*^2}{<} M, M > T^{*^1}$
All sizes	897 (35)	72.1	9.1	40.7	9.5	< 0.001	$S < ^{*2}M, M > T ^{*2}$

*¹, p<0.05; *², p<0.001

表7 2003 年に採集された幼生の表層混合層(M), 混合層深度(MLD), 水温躍層内(T)における外套長(ML) 別幼生分布密度(ind./10³m³)の比較. P 値は Kruskal-Wallis 検定, 各分布深度の多重比較は Dunn 多重比較検 定による. 幼生数のカッコ内は, 採集点数を示す

MI (mm)	Number of	Mean MLD(m)	Mean Density (ind./10 ³ m ³)				Dunn's tost
IVIL(IIIII)	Paralarvae	MLD(III)	М	MLD	Т	r-value	Durin's lest
ML< 1	No Catch	-	-	-	-	-	- 1
1 <u><</u> ML<2	8 (5)	75.2	3.7	0.0	0.6	< 0.01	$M > MLD_{*2}^{*1}$, MLD =T
2 <u><</u> ML<3	48 (9)	77.0	7.6	3.2	0.3	< 0.01	M > MLD, $MLD = T$
ML <u>></u> 3	41 (10)	78.7	5.4	3.2	0.9	0.05	M =MLD, MLD =T *3
All sizes	97 (10)	78.7	13.7	5.8	1.4	< 0.01	M =MLD,MLD =T *3

*1 p<0.05, *2p<0.01, *3 M>T(p<0.05)

幼生の出現水温

幼生の成長に伴う水温と幼生出現との関係を明ら かにするために,外套長別に出現水温とその範囲を 調べた.1998-2002年は,海表面水温と各曳網層の中 心水深(13,38,63,88m),曳網層の異なる2003 年については,混合層の中心,混合層下部と水温躍 層中の水温を用いた.その結果,幼生出現の平均水 温は,ML1mm未満の幼生の20.4℃が最も高く,成長 するにつれて出現水温が低下し,ML3mm以上の幼 生では19.6℃となる負の相関関係を示した(表8,図 9;出現平均水温℃=20.5-0.3xML(m);p=.003,r=0.97). また,ML1mm未満とML2mm以上,ML1mm台と ML3mm以上とのサイズ間では,その出現平均水温 に有意な差が認められた(One-way ANOVA,

p<0.001,F=10.3; Scheffe多重比較検定,表9). 出現温 度帯を外套長別にみると,高温側では,すべてのサ

イズで22.3℃(1999年, St.16)と同一の水温であっ たが,最低水温では,ML1mm未満の幼生が18.9℃と すべてのサイズの中で最も高く, ML1mm以上の幼 生では16.0-16.1℃と、ML1mm未満の幼生に比べ2℃ 以上も出現する温度が低くなっていた.したがって、 出現水温は、ふ化直後の幼生がもっとも高温で狭く、 成長するにしたがって低温側に拡大すると考えられ る.次に、調査海域の表層の水温とML1mm未満の 出現との関係を調べるために、ふ化幼生の出現した 年(1999,2000,01年)について、このサイズの幼生 の大部分(85.1%)が出現した水深50mまでの曳網 層中心(SST,13m,38m)を用いて、幼生の有無別に 表層の水温を比べると、出現があった表層の平均水 温は20.3℃ (SD=0.1)と幼生が出現しなかった表層に 比べ0.3℃高かったが(平均水温20.0℃, SD=0.1),両 水温に有意な差は認められなかった (p>0.05 t検定).

次に,幼生の出現した年(1999,2000,01年)と無 い年(1998,2002,03年)との表層(SST,13,38m) の水温を同様に比較すると,(2003年は曳網層が異な るが,ふ化直後の幼生が採集されなかったことから 出現の無い年として扱った),表層水温は,幼生出現 の有無でそれぞれ20.2℃ (SD=1.0), 19.3℃ (SD=1.0) と出現した年の方が0.9℃と有意に高い差が認めら れた (p<0.001,t 検定). これらのことから, ML1mm 未満の幼生が出現した年は, 出現の無い年に対して 全体的に調査海域の高温であった可能性がある.

表 8 1998-2003 年に採集された幼生の外套長(ML)別の幼生出現水温(℃). カッコ内はその標準偏差を 示す

MI (mm)	Temperature (°C)					
	Mean (SD)	Min Max.				
ML< 1	20.4 (1.0)	18.9 - 22.3				
$1 \leq ML \leq 2$	20.2 (1.1)	16.0 - 22.3				
2 <u><</u> ML<3	19.8 (1.1)	16.0 - 22.3				
$ML \ge 3$	19.6 (1.2)	16.1 -22.3				

図9 1998-2003年に採取されたスルメイカ幼生の外套長
 (ML)別,平均出現水温とその標準偏差(エラーバー),出現
 水温範囲(℃).回帰直線式のML Size は、ML1mm未満から3mm
 以上までのそれぞれのサイズにおけるMLの平均値

幼生の水平分布

幼生の水平分布を明らかにするために、幼生の外 套長別に幼生の分布密度(海表面100m²当たりの幼 生数)を示した(図10).2003年は曳網深度が異なる ため、躍層以深の大きなサイズの幼生を過小評価す る可能性があるが、先の結果より明らかになった幼 生の大部分が分布すると考えられる混合層内につい て解析した.サイズ別の幼生分布では、ふ化直後の 幼生と考えられるML1mm未満の幼生は、前述のよ うに6回の観測のうち3年(1999,2000,01年)で出 現した.分布の特徴を見ると、1999年は実施されて いないが、2000、01年では、隠岐諸島に対して対馬 暖流の上流側(西側)に出現し、対馬暖流のより上 流域で産卵された卵塊が当該海域でふ化した可能性 が高い.また、1999年と2001年は、対馬暖流の下流 側(隠岐諸島東側)に幼生が出現し,特に1999年は, この海域の分布が多い(図10-1). 隠岐諸島東側には, Katoh et al.²⁶⁾の示すような複雑な流れが存在し,こ の海域で産卵された卵塊がふ化まで保持されること も予想され,対馬暖流上流域で産卵された卵塊と当 該海域で産卵された卵塊と起源とする幼生が混在し ている可能性がある.これよりも大きなサイズの幼 生では,隠岐諸島の東側観測が実施されていない 1998,99,2002年を除いて,隠岐諸島周辺海域に分 布しており(図10-2,3,4), ML1mm未満の幼生と同様 に,対馬暖流の上流域から輸送されてきた幼生と当 該海域を起源とする幼生が混在している可能性があ る.

図10-1 1998-2003年調査時におけるML1mmm未満の幼生分布 (ind./100m2)

図10-2 1998-2003年調査時におけるML1mm台の幼生分布 (ind./100m²)

図10-3 1998-2003年調査時におけるML2mm台の幼生分布 (ind./100^介)

図 10-4 1998-2003年調査時におけるML3mm以上の幼生分布 (ind./100²)

水中ロボットによる卵塊探査の結果

パラシュート・アンカーを用いて、船体を表層流 と同方向に漂流するようにさせた結果(図5), ROV を海中でほぼ対水速力のない状態に保つことができ た. これにより、ROVの水平・垂直方向のスクリュ ーに用いて水平・垂直方向へと自在に姿勢制御と移 動が可能となり、微妙な移動速度での観察を実施す ることができた.この方法によって、6年の観測期間 中に計29点の観測点でROVによるスルメイカ卵塊 探査を実施した(表2.図3).水中映像のほとんどは、 ヤムシ、櫂足類などの遊泳シーンのほか、沈降する 懸濁物質であったが、2000年に実施した2点(図11: St.25,B) で、スルメイカの卵塊である可能性が極め て高いゼリー状物体(以下,ゼリー塊)を観察でき た. 特に、St.Bでの映像は、カメラ正面にゼリー塊 を捉えることができ、直後に背景のROV用ケーブル と補助ロープにぶつかり崩壊した. この際の映像の 卵塊とROV用ケーブルの長さと太さから、サイズは 直径約60-80cmと推定された.ただし、形状は完全 な球形ではなく、片側が溶解した不定球形をなして いた(図12).水槽内で産出されたスルメイカの卵 塊は、直径約80cmで透明なゼリー状球体であり、ふ 化が始まるとその形状が崩れることが報告されてい る¹⁸⁾. 今回, 観察されたゼリー塊は, スルメイカの 産出卵塊と同じサイズであり, ふ化が始まって卵塊 表面の包卵腺ゼリー膜が崩壊しつつある状態に極め て類似していた. また, この観測点周辺では, ふ化 直後と考えられるML1mm未満の幼生が出現してい た.

ゼリー塊を発見した観測点の水温・海水密度の鉛 直プロファイルに基づいて,発見水深の海洋環境を 調べた(図13). 隠岐諸島北西のSt.25(海深:231m) では、水深75-80m、水温20.3-20.4℃、海水密度は約 23.5-23.7(σ_t)であり, St.B(海深: 336m)では水深 約95m, 水温17.9℃で海水密度は約24.7(σ_t)であった. また, St.25では, 海表面とほぼ同温の混合層内であ るのに対して、St.Bでは海表面から1℃低下したとす る混合層深度(約82m)よりも、約13m下層に存在 していた、ゼリー塊が発見された海は、調査海域の 北側に分布する等温線が密になった海域の南側に位 置し、St.25では、傾圧的な勾配が緩やかになった海 域に相当した(図11). St.Bにおいても, その西方 は、等温線が密に分布していることから、St.25同様 に急な密度勾配が緩やかになった海域であることを 示している (図11).

図11 2000年の観測海域とROVの卵塊探査点(白丸)と、ゼリー塊の発見水深に近い水深100mの水 温水平分布図(上段). 観測線AおよびBにおける水温(中段)と海水密度(下段)の鉛直断面. ©: ゼリー塊が観察された位置

図 12 2000 年 StB で発見されたスルメイカの卵塊である可能性が高いゼリー塊. ROV のケーブル(背後の黄色のケーブル)に接触し崩壊した.大きさは 60-80cm.

図 13 卵塊である可能性が高いゼリー塊が存在した2000年隠岐諸島北方のSt.25およびSt.Bの水温(℃)と海水密度(σ_t)の鉛直分布.Oは,ゼリー 塊が存在した深度を示す.

考察

本研究では、再生産機構の解明を目的に、隠岐諸 島周辺海域をスルメイカの再生産モデル海域とし、 1998年から2004年の秋生まれ群の産卵期に MOCNESSとROVを用いて調査を行った.本調査で 明らかになったスルメイカ産出卵塊、ふ化幼生の分 布特性をSakurai et al.²⁾が提唱する本種の再生産機構 の作業仮説に対応させて幼生の出現水温、産出卵塊 の分布深度および幼生の鉛直分布について考察する.

幼生の出現水温

幼生の出現水温帯は、飼育実験結果によるふ化幼 生の生残適水温である15-23℃で採集されたが、ふ化 直後の幼生は、高温側の18.9-22.3℃の範囲で出現し、 成長に伴い出現水温が低下する傾向が認められた

(表8, 図9). スルメイカのふ化幼生は,ふ化直後に 卵塊から表面に向かって遊泳することが水槽内で観 察されている¹⁸⁾.また最近になって,人工授精によ るふ化幼生の遊泳速度に対する水温の影響を調べた 飼育実験では,少なくとも18-23℃の水温範囲で鉛直 遊泳することが確認されている(宮長,私信).同様 の遊泳実験を継続中であるが,もっとも幼生が鉛直 遊泳可能な水温は,さらに限定されて19-23℃とかな り狭い可能性が出てきた.これらのことから,再生 産海域においてふ化直後の幼生が表層まで正常に遊 泳するには,生残適水温である下限の15℃よりも高 い水温である可能性がある.また,スルメイカ幼生 は,ふ化後24時間で外套長1mm以上になることから ²⁷⁾ 外套長1mm未満のふ化直後の幼生が採集される 海域は,産出卵塊の存在する海域と判断される.本 研究では,各年で観測範囲が異なっているが,ふ化 直後の幼生が出現した年(1999,2000,01年)とし ない年(1998年,2002,03年)の表層の水温(SST, 13,38m)は,後者の方が0.9℃低い19.3℃であり, ふ化直後の幼生が出現した年においても,このサイ ズの幼生は,隠岐諸島に対して対馬暖流の下流域 (1999年),上流域(2000年),隠岐諸島周辺(2002

年)に分布するパターンが認められた.このように, 幼生の出現があった年でも,その起源が異なる可能 性があることから,ふ化直後の幼生が出現しなかっ た年は,産卵海域はさらに対馬暖流の上流域に移動 していたと推察され,当該海域における水温の低下 がその要因となっている可能性がある.

産出卵塊の分布深度

ROVによる卵塊探査から、2000年のスルメイカの 産出卵塊である可能性が極めて高いゼリー塊を混合 層と水温躍層との境界で発見することに成功した (図12)、スルメイカの産出卵塊は、これまで発見さ れておらず、その存在には、二つの仮説があった. 一つは、スルメイカが海底近くで産卵し、その卵塊 が海底に沈降して存在するという説²⁹⁻³³⁾.もう一つ の仮説は、卵塊は表・中層の暖水中で産卵され、ふ 化まで中層に存在する説^{2,19)}である.今回のROVに よる卵塊探査から,スルメイカ卵塊は,卵塊内の発 生卵の生残に適した水温帯内の混合層と密度躍層と の境界深度付近に分布していることが明らかになっ た. 飼育実験の結果から弱い沈降特性を示すスルメ イカ類の産出卵塊は18,19),その浮力が中立となる深 度にまで沈むと考えられている19).今回の結果は, 実際の再生産海域においても、躍層上部の暖水中で 産出された卵塊が、中性浮力となる躍層の上層まで 沈降し、その深度に存在していたと推定される. ま た, 卵塊の緩やかな沈降特性は, 卵塊内の発生卵と 卵塊表面を覆う包卵腺由来ゼリーが海水より比重が 重く¹⁹⁾, 卵塊内の輸卵管腺由来ゼリーは海水より比 重が軽いとの極めて微妙なバランスで生じている (桜井, 私信). このため, 卵塊は混合層から沈降し て躍層付近に達した後、卵塊がそこで滞留するか、 あるいは緩やかに沈降して行くかは、現段階では判 断できない.しかし、水槽内での観察による卵塊の 緩やかな沈降を考慮した場合、産卵された卵塊から ふ化が生ずるまでの約1週間の間に,密度躍層で沈降 速度を緩めながらも,徐々に沈んで行く可能性も否 定できない. 2000年に発見された卵塊である可能性 が極めて高いゼリー塊は、海表面から1℃低下したと する混合層深度(約82m)よりも、約13m下層に存 在しており, 卵塊が混合層から躍層付近まで沈降し た後も、ふ化まで徐々に沈降した可能性がある.卵 塊が海面での波浪による衝撃や海底へ着底すること による破壊の危険性がない中層の躍層付近に滞留す ることが、卵塊内の発生卵の生存に有利に働くとい う仮説^{34,35)}を支持している.

幼生の鉛直分布

MOCNESSネットによる幼生の鉛直分布をした結 果,幼生全体としては,25-50m層で密度の極大をも つ分布の特徴が認められた(図8).これらの分布特 徴は,渡部¹⁰⁾,笠原・名角¹⁶⁾,林¹⁷⁾らの報告と一致 する.さらに,昼夜の別で分布に差は認められず(表 5)、 ふ化後間もない幼生は海表面近くに分布し、成 長に伴ってその分布深度が増加することが明らかに なった.また、海表面、混合層、躍層で比較すると、 ML1mm未満の幼生は、海表面から混合層での分布 密度が高く、それ以上のサイズの幼生は、混合層内 を中心に分布するが,成長するにつれて躍層内での 分布密度が増加する傾向を示した(表9,図8). 飼育 下の観察によると、幼生は、ふ化直後に卵塊から水 面に向かって游泳し、水面近くに滞留することが確 認されている¹⁸⁾.これらのことから、実際の再生産 海域においても, 躍層付近の卵塊からふ化した幼生 は、海表面に向かって移動し、表層近くに滞留する 習性を持つと考えられる.本研究の結果から、なぜ スルメイカ幼生がこのような分布をするのかは明ら かにすることができないが、この分布特性は、幼生 の生存に有利に働いている可能性がある.一般に海 表面近くは、下層の水温よりも高温であるため、表 層に多く分布することは、前述の低温による遊泳活 性の低下を防ぐのに好都合である.また,飼育実験 下でのスルメイカ幼生は、6-7日で飢餓のために死亡 することから¹⁸⁾, 卵黄から初期餌料へのcritical period 36,37) を表層で迎えると推察できる. スルメイカの初 期餌料は明らかになっていないが, Hanlon et al.³⁸⁾ は, 頭足類の幼生は有機浮遊態を餌料として利用す る可能性を提唱し、O'Dor et al.¹⁹⁾は、カナダイレッ クス幼生の遊泳方法は、有機浮遊態を利用するのに 適していると指摘している.実際に,頭足類幼生の 消化腺からは、微細な有機態が検出されており39,40)、 スルメイカ幼生は、 海表面に多く分布する有機物 ^{41,42)} を利用している可能性がある. さらにアカイカ 科の産卵場は、カナダイレックスと湾流、スルメイ カ冬生まれ群と黒潮のように、大きな海流と関連し ⁴³⁾, それぞれの海流を起源する水塊と湾岸水とのフ ロント域に幼生が多く分布している^{13,44,45)}.この ようなアカイカ科の幼生分布の特性からBakun and Csirke³⁴⁾は、湾流や黒潮のように大きな傾圧構造を 持つ流れ場の海表面では、フロントに向かう密度流 が生じ、幼生や餌料の可能性のある有機懸濁熊が集 積してふ化幼生の餌環境を好適にしていると仮説を 立てている. したがって、ふ化後に海表面に移動し 海表面に滞留することによって幼生は、餌環境の好 転46),密度流の輸送による好適環境海域への移動47), さらに高温かつ好適な餌環境に留まることによって 成長が促進される代謝的な有利性48)などの利点を得 ることができる.しかしながら、表層での流れが速 い黒潮域や湾流などの大きな傾圧構造を持つ海域の

海表面に留まることは、その後の生残と成長に不利 に働く可能性のある海域への輸送・逸散の危険性を はらんでいる.したがって分布水深を増加させるこ とは、表層での早い流速の影響を軽減させ、餌の豊 富な海域への保持に寄与すると考えられる.さらに、 拡散して分布することは、海表面近くにすべてのサ イズの幼生が集中することによる索餌の競合を緩和 し、また海表面での集中的な被食を軽減させている のかも知れない.これら、分布特性やその変化に伴 う幼生の生残と成長への有利性は、今後の更なる観 測が必要である.

おわりに

本研究の結果から, Sakurai et al.²⁾の提唱するスル メイカの再生仮説のうち、卵塊と幼生に関する機構 は、ほぼ検証することができた、本研究で明らかと なった、卵塊が躍層(表層混合層深度)付近に存在 すること, 幼生が混合層を中心に分布することは, 混合層内の水温低下による卵塊とふ化幼生の生残の 生理的な要因, 表層混合層が海底まで達して卵塊が 崩壊し生残が低下する物理的な要因が再生産の成否 に影響していると考えられる.このことは、秋から 冬に陸棚上で産卵する本種にとって、海面の冷却の 強弱によってその再生産の成否が大きく影響を受け ることを示唆している.図14に、冬生まれ群の漁獲 量49)と、海面の冷却の指標として本群の産卵最盛期 (1-2月)の東シナ海における海上気温と風速(米国 NCEP/NCAR再解析データ使用)を示した. 80年代 前半は、いずれの月においても、相対的に風速が強 く気温が低いが、80年代後半から風速が弱まり気温 の上昇が認められる.スルメイカの漁獲量は、これ ら海面冷却の強・弱と低・高水準期が一致し、本研 究で明らかとなった再生産における生物的および物 理的な生残要因が卵塊およびふ化幼生に作用してい る可能性がある. また, Sakurai et al.²⁾は, レジュー ムシフトにおける暖/寒期がスルメイカ資源の増/減 期に対応していることを指摘しており、本研究の結 果は、この気候変動に関連した本種の資源変動メカ ニズムを理解するのに役立つものである.スルメイ カ水揚量は、回遊経路、漁場の位置なども大きな変 動要因となるが、日本海南西部から東シナ海の秋冬 期における海面冷却の変化のモニタリングは、資源 量の変動を予測する上で有効な手段となる.

要 約

本研究では、スルメイカ秋生まれ群の再生産海域 の一部である日本海南西海域の隠岐諸島周辺を モデル海域に設定し、ROVを用いたスルメイカ産 出卵塊が存在する海洋環境の特定と、MOCNESS による幼生採集からふ化後の幼生の分布特性を 調べた.本研究により以下の事項が明らかになっ た、

 1) 隠岐諸島周辺に出現する幼生は、この海域で 産卵・ふ化・成長する幼生と、当該海域よりも対 馬暖流の上流域で産卵・ふ化・成長した幼生が混 在する。

2) 水中テレビロボット (ROV) を用いた本種の 卵塊探査から、スルメイカの産出卵塊は、飼育実 験による卵塊の生残適水温帯内(15-23℃)の密 度躍層付近にふ化まで滞留する可能性が極めて 高い.

3)スルメイカ幼生の出現水温は、ふ化直後の幼生 がもっとも高く(18.9-22.3℃)成長するにしたが って、出現平均水温、出現範囲が低温側に広がる. 4)MOCNESSを用いた幼生の鉛直分布調査から、

ふ化直後の幼生は海表面近くに分布し,成長する にしたがって分布深度が増加する.

5)同,幼生は混合層を中心に分布し,外套長1mm 未満の幼生は,表層の分布の割合が多く,それよ りも大きなサイズの幼生の一部は,水温躍層まで 分布域を広げる.

6) 同,スルメイカ幼生は日周鉛直移動しないか, したとしても大きな日周移動はしない.

図14 1980-2003年までの東シナ海における1月,2月の海表面における平均,気温と風速(米国 NCEP・NCARの再解析データ使用,スルメイカ冬生まれ群の漁獲量変化(木所ほか,2003から引用). いずれも5年の移動平均.

引用文献

- 新谷久男 (1967) スルメイカの資源.日本水産 資源保護協会.水産研究叢書, 16, 57.
- Sakurai, Y., Kiyofuji, H., Saitoh, S., Goto, T., and Hiyama Y. (2000) Changes in inferred spawning sites of *Todarodes pacificus* (Cephalopoda: Ommastrephidae) due to changing environmental conditions. *ICES J.Mar.Sci.*, **57**, 24-30.
- Sakurai, Y., Kiyofuji, H., Saitoh, S., Yamamoto, J., Goto, T., Mori K., and Kinoshita T. (2002) Stock fluctuations of the Japanese common squid, *Todarodes pacificus*, related to recent climate changes. *Fish. Sci.*, 68, Supp.I., 226-229.
- 4) 土井長之・川上武彦 (1979) 日本近海産スルメイカの生物生産と漁業管理.東海水研報,99, 65-83.
- 5) 新宮千臣・村田守・石井正(1983) 日本の太平 洋沿岸におけるスルメイカの漁獲変動. 北海道 区水研報, 48, 21-36.
- 安達二郎 (1988) 日本海西部海域におけるスル メイカ, *Todarodes pacificus* Steenstrup,の漁業生 物学的研究. 島根水試研究報告, 5, 1-93.
- Lipinski, M. R., Butterworth, D. S., Augustyn, C. J., Brodziak, J. K. T., Christy, G., des Clers, S., Jackson, G. D., O'Dor, R. K., Pauly, D., Purchase, L. V., Roberts, M. J., Roel, B. A., Sakurai, Y., and Sauer, W. H. H. (1998) Cephalopod fisheries: a future global upside to past over-exploitation of living marine resources? *South Afr. Jour. Mar. Sci.*, 20, 463-469.

Dawe, E.G., Colbourne, E.B., and Drinkwater, K.F. (2000) Environmental effects on recruitment of short-finned squid (*Illex illecebrosus*) . *ICES J. Mar. Sci.*, 57(4), 1002-1013.

9) Waluda,C.M., Rodhouse, P.G., Podesta, G.P., Trathan P.N., and Pierce G.J. (2001) Surface oceanography of the inferred hatching grounds of *Illex argentinus*

(Cephalopoda: Ommastrephidae) and influence on recruitment varialitity. *Mar. Biol.*, **139**, 671-679.

10) 渡部泰輔(1965) 1959~1962 年冬季本邦南西海 域におけるスルメイカ稚仔の分布生態について.東 海水研報, 43, 1-12.

11) Okutani, T., and Watanabe, T. (1983) Stock assessment by larval surveys of the winter population of *Todarodes pacificus* Steenstrup (Cephalopoda: Ommastrephidae), with a review of early works. *Biol. Oceanogr.*, **2**, 401-431.

12) 笠原昭吾 (1991) スルメイカの資源. イカ -その 生産から消費まで- (奈須敬二・奥谷喬司・小倉通男 編), 成山堂書店, 147-154.

13) Bower, J.R., Nakamura, Y., Mori, K., Yamamoto, J., Isoda, Y., and Sakurai Y. (1999) Distribution of *Todarodes pacificus* (Cephalopoda: Ommastrephidae) paralarvae near the Kuroshio off southern Kyushu, Japan. *Mar. Biol.* **135**, 99-106.

14) Goto, T. (2002) Paralarval distribution of Ommastrephid squid *Todarodes pacificus* during fall in the southern Sea of Japan, and its implication for locating spawning grounds. *Bull. Mar. Sci.*, **70**(1), 299-312.

15) Goto, T., Kidokoro, H., and Kasahara, S. (2002) Changes in the distribution and abundance of *Todarodes pacificus* (Cephalopoda, Ommastrephidae) paralarvae in the southwest Sea of Japan with changing stock levels. *Fish. Sci.*, **68**, *Supp.I.*, 198-201.

16) 笠原昭吾・名角辰郎 (1978) 秋季日本海おける スルメイカ稚仔の垂直分布. 東北区水産研究所八戸 支所 イカ資源・漁海況検討会議議事録(昭和52年度), 10-11.

17)林 清志 (1991) 富山湾に出現する頭足類の卵及 び稚仔の分布の季節変化.水産海洋研究,55(4),
315-322.

18) Bower, J.R., and Y. Sakurai (1996) Laboratory observations on *Todarodes pacificus* (Cephalopoda :

Ommastrephidae) egg masses. *Amer. Malac. Bull.*, **13**(1/2), 65-71.

19) O'Dor, R.K., and Balch, N. (1985) Properties of *Illex illecebrosus* egg masses potentially influencing larval oceanographic distribution. *N. Atlant. fish. Orgn.* (*NAFO*) *Sci. Coun. Studies*, **9**, 69-76.

20) Sakurai, Y., Bower, J. R., Nakamura, Y., Yamamoto, S., and Watanabe K. (1996) Effect of temperature on development and survival of *Todarodes pacificus* paralarvae embryos and paralarvae. *Amer. Malac. Bull.*, **13**(1/2), 89-95.

21) 浜部 基次・清水 虎雄 (1966) 日本海南西海域 を主としたスルメイカの生態学研究. 日水研報, 16, 13-55.

22) Wiebe, P.H., Burt, K.H., Boyd, S.H., and Morton, A.W. (1976) A multiple opening/closing net and environmental sensing system for sampling zooplankton. *J. Mar. Res.*, **34**(3), 313-326.

23) 山本 潤・明井 崇子・J. R. Bower・後藤 常夫・ 中村 好和・増田 紳哉・桜井 泰憲(2001):スルメイカ 幼生調査用ネットの網目による受精卵・ふ化幼生の 保持状態の検討.日水誌. 67(3), 497-499.

24) 奥谷 喬史 (1965) イカ類の初期生活史に関する
 研究-I. スルメイカのリンコトウチオン期
 (Rhynchoteuthion) 幼生, 東海水研報, 41, 23-32.

25) 沖山 宗雄 (1965) スルメイカ, *Todarodes pacificus* STEENSTRUPの卵・稚仔に関する2・3の知 見. 日水研報, **15**, 39-53.

26) Young, R. E., and Harman, R.F.
(1988) "Larva", "paralarvae" and "subadult" in cephalopod terminology. *Malacologia*, **29**(1), 201-207.

27) Watanabe, K., Sakurai, Y., Segawa S., and Okutani, T. (1996) Development of the ommastrephid squid *Todarodes pacificus*, from fertilized egg to rhynchoteuthion paralarva. *Amer. Malac. Bull.*, **13**(1/2), 73-88.

28) Katoh, O., Morinaga, K., Miyaji, K., and Teshima K. (1996) Branching and joining of the Tsushima Current around the Oki Islands. *J. Oceanogr.*, **52**, 747-761.

29) 浜部 基次 (1961a) スルメイカ Ommastrephes sloani pacificus (Steenstrup) の生態並びに繁殖に関する実験的研究. I. 交接. 動雑, **70**(11), 378-384.

30) 浜部 基次 (1961b) スルメイカ Ommastrephes sloani pacificus (Steenstrup) の繁殖生態に関する実験的研究. II. 産卵. 動雑, **70**(11), 385-394.

31) 浜部 基次 (1961c) スルメイカ Ommastrephes sloani pacificus (Steenstrup) の繁殖生態に関する実験 的研究.Ⅲ. 初期発生と孵化直後の幼生の形態. 動雑, **70** (12), 408-420.

32) 浜部 基次 (1962) 日本海西南海域におけるスル メイカの発生学的研究.日水研報告, 10, 1-45.

33) 浜部 基次 (1963) 室内飼育水槽におけるスルメ イカの産卵実験.日水誌, 29 (10), 930-934.

34) Bakun, A., and Csirke, J. (1998) Environmental processes and recruitment variability. In P. G. Rodhouse,
E. G. Dawe, R. K. O'Dor (Eds.), Squid recruitment dynamics: The genus Illex as a model, the commercial Illex species and influences on variability (pp. 105-124).
FAO Fisheries Technical Paper, 376, FAO, Rome.

35) 桜井泰憲 (2001) 気候変化とイカ類資源の変動. 総特集「大規模大気海洋相互作用,-数十年スケール 変動の実態と機構-」,月刊海洋, 号外 24, 228-236.

36) O'Dor, R. K., Foy, E. A., Helm, P. L., and Balch, N. (1986) The locomotion and energetics of hatchling squid, *Illex illecebrosus . Amer. Malac. Bull.*, *4*(1), 55-60.

37) Vecchione, M. (1987) Juvenile ecology. In P. R. Boyle (ed), *Cephalopod Life Cycles. Volume 2* (pp. 61-84), Academic Press, London.

38) Hanlon, R.T., Turk, P.E., and Lee, P.G. (1991) Squids and cuttlefish mariculture: an updated perspective. *J. Cephalopod Biology*, **2**(1), 31-40. 39) Vecchione, M., and Hand, V.A. (1989)
Digestive-gland histology in paralarval squids
(Cephalopoda: Loliginidae). *Fish. Bull.*, 87(4),
995-1000.

40) Vidal, E.A.G., and Haimovici, M. (1998) Feeding and the possible role of the proboscis and mucus cover in the ingestion of microorganisms by rhynchoteuthion paralarvae (Cephalopoda: Ommastrephidae). *Bull. Mar. Sci.*, **63** (2), 305-316.

41) Liss, P.S. (1975). The chemistry of the sea surface microlayer. In J.P. Riley, G. Skirrow (Eds.), *Chemical Oceanography, Vol. 2, 2nd ed.* (pp.193-243), Academic Press, London.

42) Hunter, K.A., and Liss, P.S. (1981) Organic sea surface films. In E.K. Duunrsma, R. Dawson (Eds.), *Marine Organic Chemistry* (pp. 259-298), Elsevier Scientific, Amsterdam.

43) Hatanaka H., Kawahara, S., and Uozumi, Y. (1985a) Comparison of life cycles of live ommastrephid squids fished by Japan: *Todarodes pacificus, Illex illecebrosus Illex argentinus, Nototodarus sloani sloani and Nototodarus sloani gouldi. N. Atlant. fish. Orgn. (NAFO) Scient. Coun. Stud.*, **9**, 59-68.

44) Hatanaka, H., Lange, A.M.T., and Amaratunga, T.

(1985b) Geographical and vertical distribution of short-finned squid (*Illex illecebrosus*) larvae in the Northwest Atlantic, *N. Atlant. fish. Orgn. (NAFO) Scient. Coun. Stud.*, **9**, 93-99.

45) Rowell, T.W., Trites, R.W., and Dawe, E.G. (1985) Distribution of short-finned squid (*Illex illecebrosus*) larvae and juveniles in relation to the Gulf Stream frontal zone between Florida and Cape Hatteras. *N. Atlant fish Orgn (NAFO) Scient Count Stud.*, **9**, 77-92.

46) Neilson, J.D., and Perry, R.I. (1990) Diel vertical migrations of marine fishes an obligate or facultative process? In J.H.S. Blaxter, A.J. Southward (Eds.), *Advances in Marine Biology*, **26**(pp. 115-168), Academic Press, London.

47) Fortier, L., and, Leggett, W. C.(1983) Vertical migrations and transport of larval fish in a partially mixed estuary. *Can. J. Fish. Aquat. Sci.*, **40**(10), 1543-1555.

48) Wurtsbaugh, W.A., and Neverman, D. (1988) Post-feeding thermotaxis and daily vertical migration in a larval fish. *Nature*, **333**(6176), 846-848.

49) 木所英昭・森賢・後藤常夫・木下貴裕(2003) わが国におけるスルメイカ資源量評価・管理方策に ついて.日本鯨類研究所 資源管理研究センター・ 水産資源管理談話会報, **30**. 18-35.