第4章 自然科学分析の成果

第1節 殿河内ウルミ谷遺跡の自然科学分析

パリノ・サーヴェイ株式会社

はじめに

殿河内ウルミ谷遺跡では、弥生時代中期から中・近世にかけての遺構・遺物が検出されている。集 落跡に伴う遺構が検出されている。このうち、飛鳥時代から奈良時代には、鍛冶工房が存在したこと が確認されている。

本報告では、各遺構の年代確認のための放射性炭素年代測定、木材利用を検討するための樹種同定、 古環境を検討するための土壌分析(珪藻分析・花粉分析・植物珪酸体分析)、須恵器内に認められる黒 色物質の由来を検討するための赤外分光分析(IR分析)を実施する。

I 放射性炭素年代測定

1 試料

試料は、各遺構から出土した炭化材19点(試料No.1~19)である。各試料の観察結果等を表52に示す。

No.	取上No.	地区	遺構	層位	種類	心・辺材	重量	試料の大きさ	色	乾湿	付着物の有無	残試料
1	1723	AХ	SK1	埋土	炭化材	辺材	0.5g	$8 \times 3 \times 1$ cm	黒	乾燥	土壌(微量)	有
2	1725	AХ	SK1	埋土	炭化材	不明	0.5g	$8 \times 8 \times 3$ cm	黒	乾燥	無	有
3	788①	AХ	SK2	検出中	炭化材	辺材	0.5g	$5 \times 5 \times 1$ cm	黒	乾燥	土壌	有
4	1471①	A⊠	SK2	埋土	炭化材	不明	0.5g	破片多数	黒	乾燥	土壌(微量)	有
5	1358①	A区	SK7	4層	炭化材	辺材	0.5g	$4 \times 5 \times 6$ cm	黒	乾燥	土壌(微量)	有
6	1235①	AX	SK7	4層	炭化材	不明	0.5g	$4 \times 4 \times 1$ cm	黒	乾燥	土壌(微量)	有
7	1473①	AХ	SK11	埋土	炭化材	不明	0.5g	4.5×3×1cm	黒	乾燥	土壤(微量)	有
8	1473②	A⊠	SK11	埋土	炭化材	不明	0.5g	$3.5 \times 1 \times 1.8$ cm	黒	乾燥	土壌(微量)	有
9	1473③	AХ	SK11	埋土	炭化材	不明	0.5g	$3.5 \times 4 \times 1$ cm	黒	乾燥	土壤(微量)	有
10	566	AX	I9グリッド		炭化材	不明	0.2g	破片多数	黒	乾燥	鉄滓	有
11	986	A⊠	I9グリッド(a~c-1区)	黄褐色砂礫	炭化材	不明	0.2g	破片多数	黒	乾燥	鉄滓	有
12	1043	A区	I9グリッド(a~c-4・5区)	黄褐色砂礫	炭化材	不明	0.2g	破片4片	黒	乾燥	鉄滓	有
13	1020	AХ	E6グリッド	砂礫層	炭化材	不明	0.2g	破片多数	黒	乾燥	鉄滓	有
14	877	C区	SK6	床面	炭化材	不明	0.2g	$1.5 \times 1 \times 0.5$ cm	黒	乾燥	土壤(微量)	有
15	175	C区	SS5	3層	炭化材	不明	0.2g	2×1.2×0.8cm	黒	乾燥	土壌(微量)	有
16	1830	C区	SS8-1(c-2)	貼床	炭化材	不明	0.2g	破片3片	黒	乾燥	土壌(微量)	有
17	1027	C区	SS9	埋土	炭化材	不明	0.2g	破片4片	黒	乾燥	土壤(微量)	有
18	1218	C区	SS12	埋土	炭化材	不明	0.5g	3.5×2.4×1cm	黒	乾燥	土壤(微量)	有
19	1251	C区	SS15	暗黄褐色土	炭化材	不明	0.5g	2×1.5×1cm	黒	乾燥	土壌(微量)	有

表52 年代測定試料

2 分析方法

測定に供する各炭化材の状況を記載し、写真撮影を行う。試料に土壌や根などの目的物と異なる年 代を持つものが付着している場合、これらをピンセット、超音波洗浄などにより物理的に除去する。 その後HClによる炭酸塩等酸可溶成分の除去、NaOHによる腐植酸等アルカリ可溶成分の除去、HCl によりアルカリ処理時に生成した炭酸塩等酸可溶成分を除去する(酸・アルカリ・酸処理)。試料をバ イコール管に入れ、1gの酸化銅(Ⅱ)と銀箔(硫化物を除去するため)を加えて、管内を真空にして封 じきり、500℃(30分)850℃(2時間)で加熱する。液体窒素と液体窒素+エタノールの温度差を利用し、

表53 放射性炭素年代測定結果(1)

試料No.	種粕	測定年代	δ^{13} C	補正年代						暦	年較正約	吉果						Code No
取上No.	112,750	BP	(‰)	BP	誤差			cal B0	C/AI)				cal B	Р	1	相対比	Coue Ivo.
					σ	cal	AD	995 -	cal	AD	1,007	cal	BP	955	- 943	3 0	.337	
_ 試料No.1	- 最化材	1 030 + 20	-25.89	$1,010 \pm 20$		cal	AD	1,011 -	cal	AD	1,026	cal	BP	939	- 924	l 0	.663	IAAA-
取上No.1723	DCTUP3	1,000-20	0.48	$(1,013\pm22)$	2σ	cal	AD	984 -	cal	AD	1,040	cal	BP	966	- 910) 0	.995	123435
						cal	AD	1,110 -	cal	AD	1,113	cal	BP	840	- 837	7 0	.005	
					σ	cal	AD	1,024 -	cal	AD	1,046	cal	BP	926	- 904	1 0	.436	1
試料No2	H /1.1.1	1 000 1 00	-28.80	970 ± 20		cal	AD	1,093 -	cal	AD	1,120	cal	BP	857	- 830) 0	.459	TAAA-
取上No.1725	灰化材	$1,030 \pm 20$	$\begin{bmatrix} \pm \\ 0.24 \end{bmatrix}$	(965 ± 22)	0	cal	AD	1,140 -	cal	AD	1,148	cal	BP	810	- 802	2 0	.106	123436
			0.21		2σ	cal	AD	1,019 -	cal	AD	1,055	cal	BP	931	- 895		.3/5	ĺ
					~	cal	AD	1,077 -	cal	AD	1,104	cal	DP	073	- 790		220	
					σ	cal	AD	990 -	cal	AD	1,000	cal	DP	904	- 944		.239	ĺ
試料No.3	出 化材	1.080 ± 20	-29.24	$1,010 \pm 20$	2 0	cal		086 -	cal		1,030	cal	BD	950	- 907	7 0	060	IAAA-
取上No.788①	100	1,000 - 20	0.31	$(1,007\pm22)$	20	cal	AD	1 103 -	cal	AD	1,043	cal	BP	904 847	- 832		037	123437
						cal	AD	1 143 -	cal	AD	1 146	cal	BP	807	- 804		003	1
			00 40		σ	cal	AD	995 -	cal	AD	1 007	cal	BP	955	- 943	3 0	496	
試料No.4	炭化材	1050 ± 20	-26.48 ±	$1,020 \pm 20$		cal	AD	1 011 -	cal	AD	1 022	cal	BP	939	- 928	3 0	504	IAAA-
収上N0.1471①	, and the second		0.28	$(1,022\pm21)$	2σ	cal	AD	985 -	cal	AD	1.030	cal	BP	965	- 920) 1	.000	123438
					σ	cal	AD	1.683 -	cal	AD	1.706	cal	BP	267	- 244	1 0	.170	
						cal	AD	1,720 -	cal	AD	1,735	cal	BP	230	- 215	5 0	.130	ĺ
						cal	AD	1,805 -	cal	AD	1,819	cal	BP	145	- 131	0	.110	ĺ
						cal	AD	1,833 -	cal	AD	1,881	cal	BP	117	- 69	0	.442	ĺ
試料No5	H /1.1.1		-22.80	130 ± 20		cal	AD	1,915 -	cal	AD	1,931	cal	BP	35	- 19	0	.144	IAAA-
取上No.1358①	灰化树	90 ± 20	$\begin{bmatrix} 0 \\ 50 \end{bmatrix}^{\pm}$	(128 ± 22)		cal	AD	1,951 -	cal	AD	1,952	cal	BP	-1	2	0	.004	123439
			0.00		2σ	cal	AD	1,680 -	cal	AD	1,764	cal	BP	270	- 186	5 0	.346	ĺ
						cal	AD	1,800 -	cal	AD	1,892	cal	BP	150	- 58	0	.495	ĺ
						cal	AD	1,906 -	cal	AD	1,939	cal	BP	44	- 11	0	.156	1
						cal	AD	1,951 -	cal	AD	1,953	cal	BP	-1	3	0	.003	
					σ	cal	AD	1,683 -	cal	AD	1,706	cal	BP	267	- 244	ŧ 0	.168	1
						cal	AD	1,720 -	cal	AD	1,734	cal	BP	230	- 216	5 0	.125	ĺ
						cal	AD	1,806 -	cal	AD	1,819	cal	BP	144	- 131	. 0	.111	1
						cal	AD	1,833 -	cal	AD	1,881	cal	BP	117	- 69	0	.452	1
計料No6			-21.20	130 + 20		cal	AD	1,915 -	cal	AD	1,930	cal	BP	35	- 20	0	.140	ΤΔΔΔ-
取上No.1235①	炭化材	70 ± 20	\pm	(127 ± 21)		cal	AD	1,951 -	cal	AD	1,952	cal	BP	-1	2	0	.004	123440
			0.24		2σ	cal	AD	1,680 -	cal	AD	1,739	cal	BP	270	- 211	. 0	.288	1
						cal	AD	1,742 -	cal	AD	1,763	cal	BP	208	- 187	0	.048	
						cal	AD	1,801 -	cal	AD	1,892	cal	BP	149	- 58	0	.506	1
						cal	AD	1,907 -	cal	AD	1,938	cal	BP	43	- 12	0	. 155	1
					_	cal	AD	1,951 -	cal	AD	1,953	cal	BP	-1	3	: 0	1.003	
					0	cal	AD	997 - 1 012 -	cal	AD AD	1,005	cal	DF BD	900	- 940		.105	1
試料No.7	- 最化材	1 000 + 20	-24.35	$1,010 \pm 20$	2 0	cal	AD	987 -	cal	AD	1,030	cal	BP	963	- 907	7 0	966	IAAA-
収上No.1473(1)		1,000-20	0.28	$(1,006\pm21)$	20	cal	AD	1 105 -	cal	AD	1 118	cal	BP	845	- 832		031	123441
						cal	AD	1 144 -	cal	AD	1 146	cal	BP	806	- 804		003	ĺ
			00.10		σ	cal	AD	995 -	cal	AD	1 007	cal	BP	955	- 943	3 0	468	
試料No.8	炭化材	1070 ± 20	-28.19 ±	$1,020 \pm 20$	ľ	cal	AD	1.011 -	cal	AD	1.023	cal	BP	939	- 927	7 0	.532	IAAA-
取上No.1473(2)	- Seren	1,010 20	0.25	$(1,020\pm 22)$	2σ	cal	AD	983 -	cal	AD	1.033	cal	BP	967	- 917	7 1	.000	123442
					σ	cal	AD	1.024 -	cal	AD	1.046	cal	BP	926	- 904	1 0	.393	
						cal	AD	1,090 -	cal	AD	1,121	cal	BP	860	- 829) 0	.475	ĺ
試料No9		000 + 00	-26.28	960 ± 20		cal	AD	1,139 -	cal	AD	1,148	cal	BP	811	- 802	2 0	.131	IAAA-
取上No.1473③	灰化树	980 ± 20	0.29	(962 ± 23)	2σ	cal	AD	1,020 -	cal	AD	1,058	cal	BP	930	- 892	2 0	.352	123443
						cal	AD	1,069 -	cal	AD	1,070	cal	BP	881	- 880) 0	.002	ĺ
						cal	AD	1,076 -	cal	AD	1,154	cal	BP	874	- 796	5 0	.645	ĺ
			-24 86	1 000 000	σ	cal	AD	995 -	cal	AD	1,007	cal	BP	955	- 943	3 0	.462	
試料No.10 取上No.566	炭化材	$1,020 \pm 20$	±	$1,020 \pm 20$ (1,019 + 22)		cal	AD	1,011 -	cal	AD	1,024	cal	BP	939	- 926	5 0	. 538	123444
4×1110.000			0.23	(1,015-22)	2σ	cal	AD	983 -	cal	AD	1,034	cal	BP	967	- 916	5 1	.000	120111
					σ	cal	AD	899 -	cal	AD	919	cal	BP	1,05	1 - 1,0	031 0	.330	ĺ
云-P-421 NT 1 1			-20.93	1 000 ± 00		cal	AD	952 -	cal	AD	957	cal	BP	998	- 993	3 0	.054	TAAA
	炭化材	$1,020 \pm 20$	±	$1,080 \pm 20$ (1 082 ± 22)		cal	AD	961 -	cal	AD	993	cal	BP	989	- 957	7 0	.615	123445
,			0.33		2σ	cal	AD	895 -	cal	AD	924	cal	BP	1,05	5 - 1,0	026 0	.289	
						cal	AD	937 -	cal	AD	1,016	cal	BP	1,01	3 - 934	ł 0	.711	ļ
計約.No 19			-23.14	1 070 + 90	σ	cal	AD	974 -	cal	AD	1,015	cal	BP	976	- 935	5 1	.000	ΤΔΛΛ
取上No.1043	炭化材	$ 1,030 \pm 20$	±	$(1,070 \pm 20)$ $(1,065 \pm 21)$	2σ	cal	AD	899 -	cal	AD	919	cal	BP	1,05	1 - 1,0	031 0	.148	123446
			0.20		<u> </u>	cal	AD	948 -	cal	AD	1,020	cal	BP	1,00	2 - 930) ()	.852	í
試料No13	шл.	1 1 10	-26.10	1 130 + 20	σ	cal	AD	893 -	cal	AD	900	cal	BP	1,05	7 - 1,0	050 0	.136	ΤΑΑΑ-
取上No.1020	炭化材	$ 1,140 \pm 20$	$\begin{vmatrix} & \pm \\ 0 & 32 \end{vmatrix}$	$(1,125\pm22)$		cal	AD	917 -	cal	AD	966	cal	BD	1,03	3 - 984	E 0	.864	123447
I	1	1	0.02	1	2σ	cal	АD	883 -	cal	АD	983	cal	ВΡ	1.06	7 - 967	11	.000	í .

表54 放射性炭素年代測定結果(2)

試料No.	插粘	測定年代	δ ¹³ C	補正年代						暦4	手較正結	ī果					Cada Na
取上No.	作里为只	BP	(‰)	() 留中戦正用) BP	誤差			cal BC	/AD					cal BP		相対比	Code No.
					_	cal	AD	1,644 -	cal	AD	1,664	cal	BP	306	- 286	0.975	
					0	cal	AD	1,789 -	cal	AD	1,790	cal	BP	161	- 160	0.025	
試料No.14	豊心材	210 ± 20	-22.40	250 ± 20		cal	AD	1,532 -	cal	AD	1,536	cal	BP	418	- 414	0.005	IAAA-
取上.No.877	1)K [647]	210 - 20	0.45	(248 ± 21)	20	cal	AD	1,635 -	cal	AD	1,669	cal	BP	315	- 281	0.780	123448
					20	cal	AD	1,781 -	cal	AD	1,798	cal	BP	169	- 152	0.205	
						cal	AD	1,946 -	cal	AD	1,951	cal	BP	4	1	0.010	
試料No.15	岜伊封	$1 410 \pm 20$	-27.97	$1,360 \pm 20$	σ	cal	AD	651 -	cal	AD	667	cal	BP	1,299	- 1,283	1.000	IAAA-
取上No.175	19C 1611	1,410 - 20	0.34	$(1, 362 \pm 22)$	2σ	cal	AD	641 -	cal	AD	682	cal	BP	1,309	- 1,268	1.000	123449
					_	cal	AD	663 -	cal	AD	693	cal	BP	1,287	- 1,257	0.721	
試料No.16	豊心材	1.240 ± 20	-26.94	$1,310 \pm 20$	0	cal	AD	748 -	cal	AD	764	cal	BP	1,202	- 1,186	0.279	IAAA-
取上No.1830	灰化物	1,340 - 20	0.28	$(1,311\pm23)$	2 ~	cal	AD	658 -	cal	AD	721	cal	BP	1,292	- 1,229	0.731	123450
					20	cal	AD	741 -	cal	AD	770	cal	BP	1,209	- 1,180	0.269	
						cal	AD	694 -	cal	AD	703	cal	BP	1,256	- 1,247	0.062	
						cal	AD	706 -	cal	AD	748	cal	BP	1,244	- 1,202	0.472	
Shelvi 17			-28.72	1 040 + 00	σ	cal	AD	765 -	cal	AD	782	cal	BP	1,185	- 1,168	0.208	T A A A
試料№17 取上№1027	炭化材	$1,300\pm20$	±	$1,240 \pm 20$ (1,237 ± 24)		cal	AD	789 -	cal	AD	811	cal	ΒP	1,161	- 1,139	0.198	1AAA- 123451
			0.44	(1,201 21)		cal	AD	847 -	cal	AD	855	cal	BP	1,103	- 1,095	0.060	120101
					20	cal	AD	688 -	cal	AD	753	cal	BP	1,262	- 1,197	0.435	
					20	cal	AD	760 -	cal	AD	872	cal	BP	1,190	- 1,078	0.565	
試料No.18	出化材	1.360 ± 20	-23.44	$1,380 \pm 20$	σ	cal	AD	644 -	cal	AD	662	cal	BP	1,306	- 1,288	1.000	IAAA-
取上No.1218	JC 1147	1,300 - 20	0.37	$(1, 382 \pm 23)$	2σ	cal	AD	616 -	cal	AD	670	cal	BP	1,334	- 1,280	1.000	123452
⇒+*1N-10			-25.31	020 ± 20	σ	cal	AD	995 -	cal	AD	1,007	cal	BP	955	- 943	0.462	TA A A
試不+No.19 取上No.1251	炭化材	990 ± 20	±	980 ± 20 (983 ± 21)		cal	AD	1,011 -	cal	AD	1,024	cal	BP	939	- 926	0.538	1AAA- 123453
			0.28	(000-11)	2σ	cal	AD	983 -	cal	AD	1,034	cal	BP	967	- 916	1.000	120100

1) 試料の前処理は、全て酸処理-アルカリ処理-酸処理(AAA処理)である。

2)年代値の算出には、Libbyの半減期5568年を使用した。

3)BP年代値は、1950年を基点として何年前であるかを示す。

4)付記した誤差は、測定誤差σ(測定値の68%が入る範囲)を年代値に換算した値。

5) 暦年の計算には、RADIOCARBON CALIBRATION PROGRAM CALIB REV6.0(Copyright 1986-2010 M Stuiver and PJ Reimer)を使用した。 6) 暦年の計算には、補正年代に()で暦年較正用年代として示した、一桁目を丸める前の値を使用している。

7)年代値は、1桁目を丸めるのが慣例だが、暦年較正曲線や暦年較正プログラムが改正された場合の再計算や比較が行いやすいように、暦年較正用年 代値は1桁目を丸めていない。

8)統計的に真の値が入る確率はσは68.3%、2σは95.4%である

9)相対比は、 σ 、 2σ のそれぞれを1とした場合、確率的に真の値が存在する比率を相対的に示したものである。

真空ラインにてCO₂を精製する。真空ラインにてバイコール管に精製したCO₂と鉄・水素を投入し封 じ切る。鉄のあるバイコール管底部のみを650℃で10時間以上加熱し、グラファイトを生成する。化 学処理後のグラファイト・鉄粉混合試料を内径1mmの孔にプレスして、タンデム加速器のイオン源に 装着し、測定する。

測定機器は、3MV小型タンデム加速器をベースとした¹⁴C-AMS専用装置(NEC Pelletron 9SDH-2) を使用する。AMS測定時に、標準試料である米国国立標準局(NIST)から提供されるシュウ酸 (HOX-II)とバックグラウンド試料の測定も行う。また、測定中同時に¹³C/¹²Cの測定も行うため、こ の値を用いて δ^{13} Cを算出する。

放射性炭素の半減期はLIBBYの半減期5,568年を使用する。また、測定年代は1950年を基点とした 年代(BP)であり、誤差は標準偏差(One Sigma;68%)に相当する年代である。なお、暦年較正は、 RADIOCARBON CALIBRATION PROGRAM CALIB REV6.0.0(Copyright 1986-2010 M Stuiver and PJ Reimer)を用い、誤差として標準偏差(One Sigma)を用いる。

暦年較正とは、大気中の¹⁴C濃度が一定で半減期が5568年として算出された年代値に対し、過去の宇 宙線強度や地球磁場の変動による大気中の¹⁴C濃度の変動、及び半減期の違い(¹⁴Cの半減期5730±40 年)を較正することである。暦年較正に関しては、本来10年単位で表すのが通例であるが、将来的に 暦年較正プログラムや暦年較正曲線の改正があった場合の再計算、再検討に対応するため、1年単位

第152図 暦年較正結果(確率分布:2σ)

で表している。暦年較正は、測定誤差 σ 、2 σ (σ は統計的に真の値が68%、2 σ は真の値が95%の確率で存在する範囲)双方の値を示す。また、表中の相対比とは、 σ 、2 σ の範囲をそれぞれ1とした場合、その範囲内で真の値が存在する確率を相対的に示したものである。

3 結果

放射性炭素年代測定結果および暦年較正結果を表53・54、第152図に示す。炭化材の同位体効果に よる補正を行った測定結果は、1,380~1,240±20BP(グループA;試料No15~18)、1,130~1,070± 20BP(グループB;試料No11~13)、960~1,020±20BP(グループC;試料No1~4,7~10,19)、250± 20BP(グループD;試料No14)、130±20BP(グループE;試料No5,6)に分けられる。また、測定誤差を 2σで計算した暦年較正結果(確率1)は、グループAがcal AD658-872、グループBがcal AD883-1,020、グループCがcal AD983-1,154、グループDがcal AD1,635-1,669、グループEがcal AD1,800-1,892である。

4 考察

各遺構の放射性炭素年代測定の結果、補正年代はA~Eの5グループに分けられる。測定した中で 最も古い年代が得られたグループA(試料No.15~18)は、補正年代が1,380~1,240±20BPで、全てC地 区の住居跡になる。暦年較正結果から、7世紀中頃から9世紀にかけての住居跡と考えられる。Aグ ループ内で約140年の年代差があり、住居の年代の違いを反映している可能性がある。

グループB(試料No11~13)は、補正年代が1,130~1,070±20BPで、全てA区の鉄滓付着炭化材であ る。暦年較正結果から、9世紀末頃から11世紀初頭の年代が推定される。次のグループCとの年代差 は僅かであり、同じ鉄滓付着炭化材の中にグループCに入る年代が得られた試料があることを考慮す ると、グループBと一連の可能性がある。

グループC(試料No.1~4,7~10,19)は、補正年代が960~1,020±20BPのグループで、今回の試料 の約半数を占める。暦年較正結果から、10世紀末頃から12世紀中頃の年代が推定される。

グループDは、試料No.14(SK6)の1点のみで、補正年代は250±20BPである。暦年較正結果から17 世紀代の可能性がある。

グループE(試料Na5,6)は、SK7から出土した2点で、いずれも補正年代が130±20BPを示す。 暦年較正結果から、19世紀代の可能性が考えられる。

Ⅱ 樹種同定

1 試料

試料は、各遺構から出土した炭化材21点(試料No.1~21)である。各試料の詳細は、樹種同定結果と 共に表55に記す。

2 分析方法

各試料について、木口(横断面)・柾目(放射断面)・板目(接線断面)の3断面の割断面を作製し、実 体顕微鏡および走査型電子顕微鏡を用いて木材組織の種類や配列を観察し、その特徴を現生標本およ び独立行政法人森林総合研究所の日本産木材識別データベースと比較して種類(分類群)を同定する。

なお、木材組織の名称や特徴は、島地・伊東(1982)、Wheeler他(1998)、Richter他(2006)を参考 にする。また、日本産樹木の木材組織については、林(1991)や伊東(1995,1996,1997,1998,1999)を参 考にする。

表55 樹種同定結果

試料No.	地区	遺構名	層位	取上No.	種類	備考
1	AX	SK1	埋土	1464	コナラ属コナラ亜属クヌギ節	
2	AX	SK1	埋土	1723	コナラ属コナラ亜属クヌギ節	C14試料No.1と同一個体
3	AX	SK1	埋土	1724	コナラ属コナラ亜属クヌギ節	
4	AX	SK1	埋土	1725	コナラ属コナラ亜属クヌギ節	C14試料No.2と同一個体
5	AX	SK1	埋土	1727	コナラ属コナラ亜属コナラ節	
6	AX	SK2	検出中	788①	コナラ属コナラ亜属クヌギ節	C14試料No.3と同一個体
7	AZ	SK2	検出中	788②	コナラ属コナラ亜属クヌギ節	
8	AX	SK2	検出中	7883	コナラ属コナラ亜属クヌギ節	
9	AX	SK2	埋土	1471①	コナラ属コナラ亜属コナラ節	C14試料No.4と同一個体
10	AX	SK2	埋土	14712	コナラ属コナラ亜属コナラ節	
11	AX	SK7	4層	1358①	マツ属複維管束亜属	C14試料No.5と同一個体
12	AX	SK7	4層	1235①	マツ属複維管束亜属	C14試料No.6と同一個体
13	AX	SK7	4層	1235②	マツ属複維管束亜属	
14	A区	SK7	4層	12353	マツ属複維管束亜属	
15	AX	SK7	4層	1829	マツ属複維管束亜属	
16	AX	SK11	埋土	1473①	コナラ属コナラ亜属コナラ節	C14試料No.7と同一個体
17	AX	SK11	埋土	1473②	コナラ属コナラ亜属クヌギ節	C14試料No.8と同一個体
18	AX	SK11	埋土	14733	コナラ属コナラ亜属コナラ節	C14試料No.9と同一個体
19	AX	SK11	埋土	1527	コナラ属コナラ亜属クヌギ節	
20	AX	E6グリッド	砂礫層	1020	クリ	鉄滓。C14試料No13と同一個体
21	C区	SK6	床面	877	マツ属複維管束亜属	C14試料No.14と同一個体

3 結果

樹種同定結果を表55に示す。炭化材は、針葉樹1分類群(マツ属複維管束亜属)と広葉樹3分類群 (コナラ属コナラ亜属クヌギ節・コナラ属コナラ亜属コナラ節・クリ)に同定された。各分類群の解剖 学的特徴等を記す。

・マツ属複維管束亜属(Pinus subgen. Diploxylon) マツ科

軸方向組織は仮道管と垂直樹脂道で構成される。仮道管の早材部から晩材部への移行は急~やや緩 やかで、晩材部の幅は広い。垂直樹脂道は晩材部に認められる。放射組織は、仮道管、柔細胞、水平 樹脂道、エピセリウム細胞で構成される。分野壁孔は窓状となる。放射仮道管内壁には鋸歯状の突起 が認められる。放射組織は単列、1~15細胞高。

・コナラ属コナラ亜属クヌギ節(Quercus subgen. Quercus sect. Cerris) ブナ科

環孔材で、孔圏部は1~3列、道管は孔圏外で急激に径を減じたのち、単独で放射方向に配列し、 年輪界に向かって径を漸減させる。道管は単穿孔を有し、壁孔は交互状に配列する。放射組織は同性、 単列、1~20細胞高のものと複合放射組織とがある。

・コナラ属コナラ亜属コナラ節(Quercus subgen. Quercus sect. Prinus) ブナ科

環孔材で、孔圏部は1~2列、道管は孔圏外で急激に径を減じたのち、漸減しながら火炎状に配列 する。道管は単穿孔を有し、壁孔は交互状に配列する。放射組織は同性、単列、1~20細胞高のもの と複合放射組織とがある。

・クリ(Castanea crenata Sieb. et Zucc.) ブナ科クリ属

環孔材で、孔圏部は3~4列、道管は孔圏外で急激に径を減じたのち、漸減しながら火炎状に配列 する。道管は単穿孔を有し、壁孔は交互状に配列する。放射組織は同性、単列、1~15細胞高。

4 考察

炭化材には、合計4種類が認められた。各種類の材質をみると、針葉樹のマツ属複維管束亜属は、 軽軟であるが、強度・保存性は比較的高い。燃料材としては、松脂を多く含み、燃焼性が高く、高温 が得られるが、持続性は低い。広葉樹のクヌギ節、コナラ節、クリは、重硬で強度が高い。燃料材と しては、クヌギ節とコナラ節は、国産材の中で薪炭材として最も優良な種類であり、火付きは悪いが、 持続性がある。一方、クリは、生木では硬いが、製炭すると、柔らかく燃焼性の高い炭になり、火付 きも良いが、持続性は低い。

遺構別にみると、SK1、SK2、SK11は、クヌギ節とコナラ節が混在している点で、よく似た種類 構成を示す。これらは、年代測定の結果でも同時期の遺構と考えられ、クヌギ節とコナラ節が混在し た状態で燃料などに利用されたことが推定される。一方、年代測定の結果で、SK1、SK2、SK11よ りもやや古い年代を示した鉄滓付着炭化材(試料No20)は、クリであり、製鉄にクリ材が燃料として利 用されたことが推定される。前述のように、クリは、木炭にすると、燃焼性が高くなり、民俗事例で はマツ炭と共に鍛冶燃料材に利用する(岸本・杉浦,1980)。製鉄時にクヌギ節やコナラ節等の持続性 のある木炭を主体としつつ、温度を上げるためにクリを用いたこと等が考えられる。

SK7は、年代測定の結果から19世紀代の可能性が考えられている。全てマツ属複維管束亜属に同 定され、単一の種類構成であったことが推定される。また、SK6は、17世紀代の可能性が考えられ ており、同様にマツ属複維管束亜属に同定された。この結果から、本遺跡では、17~19世紀の燃料材 等にマツが利用されたことが推定される。

Ⅲ 土壌分析(珪藻・花粉・植物珪酸体)

1 試料

段状遺構SS2および北側を東流する旧河川では、南北方向の断面3ヶ所が設けられた。東から西 にかけて、A-A'断面(SS2①)、B-B'断面(SS2②)、C-C'断面(SS2')である。この断面に見られたSS 2の造成土や構築以前の旧表土、旧河川の埋積物より土壌試料20点が採取された。このうち、A-A' 断面(SS2①)では、SS2以前の旧表土とされるSS2①-5(試料番号1)、湿地の可能性が指摘される SS2①-25(試料番号2)、中世以降の河川埋積物のSS2①-8(試料番号3)、SS2①-9(試料番号4)、 SS2①-10(試料番号5)、中世の河川埋積物のSS2①-12(試料番号6)、古代の河川埋積物のSS2① -15(試料番号7)とSS2①-16(試料番号8)、B-B'断面(SS2②)では、SS2造成土のSS2②-(7)層(試 料番号9)、SS2以前の旧表土とされるSS2②-30(試料番号10)、土器溜り被覆・地表とされるSS2 ②-23(試料番号11)、土器溜り・水辺とされるSS2②-24(試料番号12)、SS2基盤ロームのSS2②-29 (試料番号13)、C-C'断面(SS2)では、旧表土とされるSS2'-3(試料番号14)、中世以降の河川埋積物の SS2'-4(試料番号15)とSS2'-5(試料番号16)、旧表土③とされるSS2'-17(試料番号17)、旧表土①とされ るSS2'-6(試料番号18)とSS2'-7(試料番号19)、SS2造成土とされるSS2'-8(試料番号20)である。

分析に際しては、これら20点を用いた。

2 分析方法

(1) 珪藻分析

試料を湿重で5g前後秤量し、過酸化水素水、塩酸処理、自然沈降法(4時間放置)の順に物理・化 学処理を施して、珪藻化石を濃集する。検鏡に適する濃度まで希釈した後、カバーガラス上に滴下し 乾燥させる。乾燥後、プリュウラックスで封入して、永久プレパラートを作製する。検鏡は、光学顕 微鏡で油浸600倍あるいは1000倍で行い、メカニカルステージでカバーガラスの任意の測線に沿って 走査し、珪藻殻が半分以上残存するものを対象に200個体以上同定・計数する(化石の少ない試料はこの限りではないが、全面を走査する)。種の同定は、原口ほか(1998)、Krammer(1992)、Krammer & Lange-Bertalot(1986,1988,1991a,1991b)、渡辺ほか(2005)、小林ほか(2006)などを参照し、分類 基準はRound et al.(1990)に、壊れた珪藻殻の計数基準は柳沢(2000)に従う。

同定結果は、中心型珪藻類(Centric diatoms;広義のコアミケイソウ綱Coscinodiscophyceae)と羽状 型珪藻類(Pennate diatoms)に分け、羽状型珪藻類は無縦溝羽状珪藻類(Araphid pennate diatoms:広 義のオビケイソウ綱Fragilariophyceae)と有縦溝羽状珪藻類(Raphid pennate diatoms;広義のクサリ ケイソウ綱Bacillariophyceae)に分ける。また、有縦溝羽状珪藻類は、上・下殻の片方の殻だけに縦溝 のある単縦溝類、上・下殻ともに縦溝のある双縦溝類、縦溝が管の上を走る管縦溝類、縦溝が翼管の 上を走る翼管縦溝類、殻端部に短い縦溝がある短縦溝類に細分する。

各種類の生態性については、Vos & de Wolf(1993)を参考とするほか、塩分濃度に対する区分は Lowe(1974)に従い、真塩性種(海水生種)、中塩性種(汽水生種)、貧塩性種(淡水生種)に類別する。 また、貧塩性種についてはさらに細かく生態区分し、塩分・水素イオン濃度(pH)・流水に対する適応 能についても示す。そして、産出個体数100個体以上の試料については、産出率2.0%以上の種類につ いて主要珪藻化石群集の層位分布図を作成するほか、淡水生種の生態性についても100個体以上の試 料について図示する。また、産出化石が現地性か異地性かを判断する目安として、完形殻の出現率を 求める。

堆積環境の解析にあたり、海水生種(真塩性種)~汽水生種(中塩性種)については小杉(1988)、淡水 生種(貧塩性種)については安藤(1990)、陸生珪藻については伊藤・堀内(1991)、汚濁耐性については 渡辺ほか(2005)の環境指標種を参考とする。

(2)花粉分析

試料約10gについて、水酸化カリウムによる泥化、篩別、フッ化水素酸による鉱物質の除去、アセトリシス(無水酢酸9:濃硫酸1の混合液)処理による植物遺体中のセルロースの分解を行い、物理・化学的処理を施して花粉を濃集する。残渣をグリセリンで封入してプレパラートを作製し、400倍の 光学顕微鏡下でプレパラート全面を走査し、出現する全ての種類について同定・計数する。同定は、 当社保有の現生標本や島倉(1973)、中村(1980)等を参考にする。

結果は同定・計数結果の一覧表、及び花粉化石群集の層位分布図として表示する。図表中で複数の 種類をハイフォンで結んだものは、種類間の区別が困難なものを示す。図中の木本花粉は木本花粉総 数を、草本花粉・シダ類胞子は総数から不明花粉を除いた数をそれぞれ基数として、百分率で出現率 を算出し図示する。なお、木本花粉総数が100個体未満のものは、統計的に扱うと結果が歪曲する恐 れがあるので、出現した種類を+で表示するにとどめておく。

(3)植物珪酸体分析

各試料について過酸化水素水・塩酸処理、沈定法、重液分離法(ポリタングステン酸ナトリウム,比 重2.5)の順に物理・化学処理を行い、植物珪酸体を分離・濃集する。これをカバーガラス上に滴下・ 乾燥させる。乾燥後、プリュウラックスで封入してプレパラートを作製する。400倍の光学顕微鏡下 で全面を走査し、その間に出現するイネ科葉部(葉身と葉鞘)の葉部短細胞に由来した植物珪酸体(以 下、短細胞珪酸体と呼ぶ)および葉身機動細胞に由来した植物珪酸体(以下、機動細胞珪酸体と呼ぶ) を、近藤(2010)の分類を参考に同定し、計数する。

分析の際には、分析試料の乾燥重量、プレパラート作成に用いた分析残渣量を正確に計量し、堆積物1gあたりの植物珪酸体含量(同定した数を堆積物1gあたりの個数に換算)を求める。

結果は、植物珪酸体含量の一覧表で示す。その際、100個/g未満は「<100」で表示する。各分類 群の含量は10の位で丸め(100単位にする)、合計は各分類群の丸めない数字を合計した後に丸めてい る。また、各分類群の植物珪酸体含量を試料ごとに図示する。

3 結果

(1) 珪藻分析

結果を表56~59、第153図に示す。珪藻化石の産出頻度は全般的に少なく、試料番号3、4、9、 10、15、17、19、20は、堆積環境を検討する上では有意な数量の珪藻化石が産出するが、それ以外の 12試料(試料番号1、2、5、6、7、8、11、12、13、14、16、18)は60個体以下と少ない。化石が 産出した試料の完形殻の出現率は、試料によって異なるが60%前後のものが多い。産出分類群数は、 合計で55属163分類群である。以下に、珪藻化石群集の特徴を述べる。

試料番号3、4は、珪藻化石群集が近似している。産出種を塩分濃度に対するカテゴリーで類別す ると淡水域に生育する淡水生種(以下、水生珪藻と言う)が全体の約80%を占め優占する。淡水生種の 生態性(塩分濃度、水素イオン濃度、流水に対する適応性)の特徴は、貧塩不定性種と貧塩嫌塩性種、 好+真酸性種と好+真アルカリ性種、好+真止水性種と流水不定性種が優占あるいは多産する。主要 種は、好止水性で付着性のFragilariforma exiguaが20~30%と優占し、淡水浮遊性のAulacoseira ambiguaが約12~15%と多産する。このうちFragilariforma exiguaは、ミズゴケを主体とした環境や 泥炭が形成される環境に集中して出現する高層湿原指標種、Aulacoseira ambiguaは湖沼における浮 遊生種としても沼沢湿地の付着生種としても優勢に出現するが、それ以外の場所では稀な湖沼沼沢湿 地指標種である。これに次いで、淡水~汽水生種のRhopalodia gibberula、流水不定性で付着性の Epithemia adnata、Eunotia incisa、Diploneis ovalis、好止水性で偶来性浮遊性種(普段は、水生植物 などに付着して生育しているが、波等の物理的な影響を受けて基物から剝離した後は浮遊生活を営む 種)のPseudostaurosira brevistriata、Staurosira venterなどが産出する。このうちEunotia incisaは、 沼よりも浅く水深が1m前後で一面に水生植物が繁茂している沼沢や更に水深の浅い湿地で優勢な出 現の見られる沼沢湿地付着生種である。

試料番号9、10も群集が近似している。淡水生種の生態性は、貧塩不定性種、好+真アルカリ性種、 流水不定性種が優占あるいは多産する。主要種は、塩分を含む水域や塩類の豊富な水域に多産する淡 水~汽水生種のRhopalodia gibberulaが30%前後と優占し、流水不定性で付着性のUlnaria ulna、 Pinnularia rupestris、好止水性で付着性のEncynopsis neoamphioxys、陸上のコケや土壌表面など多 少の湿り気を保持した好気的環境に耐性のある陸生珪藻のPinnularia borealisなどが産出する。この うちPinnularia rupestrisは、沼沢湿地付着生種である。

試料番号15は、これまでの試料とは異なり汽水生種が全体の約60%と多産する。特徴は、汽水付着 性種のPseudopodosira kosugii、Rhopalodia musculusがそれぞれ約20%と多産し、汽水浮遊性種の Melosira cf. lineata、海水~汽水生種で付着性のCocconeis scutellumなどを伴う。このうち

表56 珪藻分析結果(1)

	1				<u> </u>			(1			_				0			<u> </u>			0'	_		
種類類	均均	上態性	学生	環境 指標種	5	25	8	9	10	12	15	16	(7)	30	23	24	29	3	4	5	17	6	7	8
Bacillariophyta(珪藻植物門)	墙刀	рн	加小			2	3	4	5	0	1	0	9	10	11	12	15	14	15	10	17	18	19	20
Centric Diatoms(中心型珪藻類)																								
Aulacoseira ambigua (Grun)Simonsen	Ogh-ind	al-il	l-bi	N,U	1	-	16	30	1	-	-	-	1	3	3	-	-	-	-	1	25	2	8	11
Aulacoseira crassipunctata	Ogh-ind	ac-il	l-ph		1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2
Krammer																								
Aulacoseira italica (Ehr.)Simonsen	Ogh-ind Fub	ind	l-ph		-	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_
Melosira of lineata (Dillwyn) Agardh	Meh			A	_	_	_	_	-	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_
Pseudopodosira kosugii	Meh			E2	-	-	-	-	_	-	-	-	-	_	-	-	_	_	20	-	-	_	-	-
Tanimura et Sato				D.																				
(Rabh.)O'Meara	Ogh-ind	ind	ind	RA	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Paralia sulcata (Ehr.)Cleve	Euh			В	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Puncticulata praetermissa (Lund)Hakansson	Ogh-ind	al-il	l-bi	M,U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
Araphid Pennate Diatoms																								
(無縦溝羽状珪藻類)																								
Araphidineae(無縦溝類)	Moh					_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_
(Pantocsek)Snoeijs	WICH																		1					
Ctenophora pulchella (Ralfs ex Kuetz)Williams & Round	Meh				-	-	-	-	-	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
Fragilaria vaucheriae	Ogh-ind	al-il	r-ph	K,T	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-	1
(Kuetz.)Petersen																					= 0			
Fragilariforma exigua (Grun.) D.M.Williams & Round	Ogh-hob	ac-il	l-ph	Р	-	-	41	46	1	-	-	-	2	4	1	-	-	-	-	4	56	-	31	9
Pseudostaurosira brevistriata	Ogh-hil	al-il	l-ph	U	-	-	7	12	-	-	2	-	-	-	-	-	-	-	-	2	5	-	2	1
(Grun.) Williams & Round Staurosira construens	Ogh-ind	al-il	l-ph	U	_	_	1	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Ehrenberg			1 1				2	-													_			,
Staurosıra venter (Ehren.)H.Kobayasi	Ogh-ind	al-11	l-ph	U	-	-	3	5	-	-	-	-	-	-	-	-	-	-	-	-	5	-	-	1
Staurosirella pinnata (Ehr.)Williams & Round	Ogh-ind	al-il	l-ph	U	-	-	-	-	1	-	-	-	1	-	-	-	-	-	-	-	1	-	-	-
Tabularia fasciculata	Meh				-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Ulnaria ulna (Nitzsch)Compere	Ogh-ind	al-il	ind	U	1	_	1	_	1	5	4	2	4	4	_	1	2	_	1	1	_	1	_	2
Tabellaria fenestrata	Ogh-ind	ind	l-ph	O,U	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
(Lyngbye)Kuetzing	Ogh-hah	0.0-11	1_b;	т						1	2									2				1
(Roth)Kuetzing	Ogn-nob	ac-n	1-01	1	-	-	-	-	-	1	2	-	-	-	-	-	-	-	-	2	-	-	-	1
Raphid Pennate Diatoms (右縦溝可出注藻類)																								
Raphidineae(有縱溝類)																								
Monoraphid Pennate Diatoms																								
(単縦溝羽状珪藻類)				DI															1					
(Kuetz.)Cleve	Men			DI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Achnanthes crenulata Grunow	Ogh-ind	al-il	r-ph	Т	-	-	-	-	-	1	1	-	-	1	-	-	-	-	1	-	-	-	-	-
Achnanthes inflata (Kuetz.)Grunow	Ogh-ind	ind	r-ph	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	1
Round & Basson	Ogh-ind	al-11	ind	U	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Planothidium lanceolatum	Ogh-ind	ind	r-ph	K,T	-	-	1	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	4	-
Psammothidium montanum	Ogh-ind	ind	ind	RLT	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_
(Krasske)Mayama				_																			-	
Psammothidium oblongellum (Oestrup.)Vijver	Ogh-ind	ind	ind	Т	-	-	1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Achnanthidium lapidosum (Krasske)H.Kobayasi	Ogh-ind	ind	r-ph	Т	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Achnanthidium minutissimum	Ogh-ind	al-il	ind	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	4
Achnanthidium subhudsonis	Ogh-ind	ind	r-ph	Т	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
(Hustedt)H.Kobayasi																			0					
Cocconeis scutellum Enrenberg	Eun-Men	al-il	r-ph	т	_	_	_	1	1	- 2	1	_	_	_	_	_	_	_	3 2	_	_	_	_	_
Cocconeis lineata Ehrenberg	Ogh-ind	al-il	r-ph	T	_	_	_	-	_	1	1	_	_	_	_	_	_	_	1	_	_	_	_	_
Cocconeis neodiminuta Krammer	Ogh-ind	al-bi	l-ph		-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Cocconeis placentula Ehrenberg	Ogh-ind	al-il	ind	U	1	-	2	3	-	9	1	2	1	-	-	1	1	-	1	1	1	-	-	-
Biraphid Pennate Diatoms (双縦溝羽状珪藻類)																								
Amphora ventricosa Gregory	Meh				-	_	-	-	_	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
Amphora copulata (Kuetz.)	Ogh-ind	al-il	ind	U	-	-	1	-	-	-	1	-	2	3	-	-	-	-	-	1	-	-	1	2
Amphora fontinalis Hustedt	Ogh-ind	al-il	ind		_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_
Amphora normanii Rabenhorst	Ogh-ind	ind	ind	RB	_	_	_	-	_	_	_	_	_	-	_	_	_	-	-	_	_	_	1	_
Cymbella aspera (Ehr.)Cleve	Ogh-ind	al-il	ind	0	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Cymbella cesatii (Rabh.)Grunow	Ogh-hob	ind	ind	Т	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Cymbella delicatissima Hustedt	Ogh-unk	unk	unk	0.7	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-
Cymbella subaequalis Grunow	Ogn-ind	a1-11 a1-i1	i-ph ind	О, 1 Т	_	_	_	_	_	_	1	_	1	_	_	_	_	_	_	_	_	_	_	_
(Breb.)Van Heurck	Sen ind	[1 -																				

表57 珪藻分析結果(2)

	4	:熊性		瑨悟				(])						2						2'			
種類類		- DU	海水	指標種	5	25	8	9	10	12	15	16	(7)	30 10	23	24	29	3	4	5	17	6	7	8
Cymbella turgidula Grunow	Ogh-ind	al-bi	r-ph	K.T	-	-	-	-	-	-	-	-	-	10	-	-	-	-	- 15	-	- 17	-	- 19	- 20
Cymbella spp.	Ogh-unk	unk	unk	,	-	-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-
Cymbopleura naviculiformis	Ogh-ind	ind	ind	O,U	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1
Encyonema gracile Ehrenberg	Ogh-ind	ind	l-ph	Т	_	_	_	2	_	_	_	1	1	1	_	_	_	_	_	_	_	1	1	_
Encyonema paucistriatum	Ogh-unk	unk	l-ph		-	-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
(Cleve-Euler)D.G.Mann Encyonema silesiacum	Ogh-ind	ind	ind	Т	_	_	1	1	2	2	1	_	4	2	2	2	2	_	_	_	_	1	_	3
(Bleisch)D.G.Mann	Och-ind	ind	r-ph	VТ		_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_
(C.Agardh)Grunow		ina	i pii	11, 1							1		_											
Encyonema spp. Encynopsis neoamphioxys	Ogh-unk Ogh-ind	unk ac-il	unk l-ph		-	_	_	_	- 3	_	-2	_	2 7	- 3	_	1	-2	_	_	_	_	_	-	-
Krammer Pleasansis alginomais	Och-ind	ol_il	ind	OU		_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	1	_
(Greg.)E.J.Cox				0,0									1										1	
Placoneis palaelginensis Lange-Bertalot	Ogh-ind	al-11	ind	0,0	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Placoneis pseudanglica (Lange-B.)E.J.Cox	Ogh-ind	al-il	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Gomphoneis heterominuta Mayama & Kawashima	Ogh-ind	al-il	r-ph	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Gomphonema acuminatum	Ogh-ind	al-il	l-ph	O,U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Gomphonema biceps F.Meister	Ogh-ind	al-il	r-ph	Т	-	_	_	1	_	_	_	-	-	-	_	_	_	-	_	_	-	_	-	-
Gomphonema christensenii Lowe et Kociolek	Ogh-ind	ind	r-ph	Т	-	-	-	-	-	3	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Gomphonema clevei Fricke	Ogh-ind	ind	r-ph	Т	-	-	1	1	_	1	1	-	1	1	_	_	_	-	_	1	1	_	1	2
Gomphonema gracile Ehrenberg	Ogh-ind	al-il	l-ph	O,U	-	-	-	1	1	-	1	-	-	2	-	-	-	-	-	-	-	-	-	-
Gomphonema parvulum (Kuetz.)Kuetzing	Ogh-ind	ind	ind	U	-	-	-	1	-	1	-	-	-	1	-	-	-	-	1	-	-	1	-	1
Gomphonema pumilum var. rigidum E.Reichardt et Lange-B.	Ogh-ind	al-il	ind	U	-	-	-	2	-	3	1	-	-	1	-	-	-	-	-	-	-	-	-	-
Gomphonema subclavatum (Grup)Grupow	Ogh-ind	al-il	ind	U	-	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-
Gomphonema subtile Ehrenberg	Ogh-ind	al-il	ind		-	-	-	-	-	-	-	-	-	-	1	-	_	-	-	-	-	-	-	-
Gomphonema vastum Hustedt	Ogh-unk	unk	ind		-	-	2	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Gomphonema spp.	Ogh-unk	unk	unk		-	-	-	1	1	1	3	-	-	2	-	2	-	-	-	2	-	-	-	-
Gomphonemopsis spp.	Ogh-unk	unk	unk	νT	-	-	1	-	-	1	2	1	1	-	-	-	-	-	-	-	-	2	1	1
Kociolek et Stoermer	Ogn-ind	ina	r-pn	K, I	-	-	-	2	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Rhoicosphenia abbreviata (C.Agardh)Lange-B.	Ogh-hil	al-il	r-ph	K,T	1	-	-	2	-	4	-	-	-	-	-	-	-	-	2	-	-	-	-	-
Diploneis weissflogii (A.Schmidt)Cleve	Euh				-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-
Diploneis smithii (Brob. ox W Smith)Clovo	Euh-Meh			E1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	2	-	-	-	-	-
Diploneis finnica (Ehr.)Cleve	Ogh-ind	ac-il	ind		_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Diploneis marginestriata Hustedt	Ogh-ind	al-il	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	1
Diploneis ovalis (Hilse)Cleve	Ogh-ind	al-il	ind	Т	1	-	3	7	1	-	2	1	1	-	-	1	1	-	-	1	3	1	7	8
Diploneis parma Cleve	Ogh-ind	ind	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Diploneis yatukaensis Horikawa et Okuno	Ogh-ind	ind	l-ph	RI	-	-	1	1	-	1	1	-	2	-	-	1	-	-	-	1	3	1	2	2
Diploneis spp. Folimpa tantula (Hust)	Ogh-unk Ogh-ind	unk	unk r-ph	DIII	-	_	_	-	-	_	-	1	_	_	1	-	_	-	-	_	_	-	-	3
Hippodonta subcostulata (Hust.)	Ogh-ind Ogh-ind	ind	ind	K1,U	-	_	_	_	_	_	_	_	_	_	_	-	_	_	_	_	_	-	1	_
Lange-B.,Metzeltin & Witkowski Navicula cryptocephala Kuetzing	Ogh-ind	al-il	ind	U	-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	2	_
Navicula placenta Ehrenberg	Ogh-ind	al-il	ind	RB,T	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	2	-	-	-
Navicula seposita var. lanceolata Haragushi	Ogh-ind	ind	l-ph		-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Navicula symmetrica Patrick	Ogh-ind	al-il	ind	Т	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Navicula tokyoensis H.Kobayasi	Ogh-ind	ind	l-ph	RI	-	-	-	10	-	-	1	-	1	-	-	-	-	-	-	-	1	-	1	2
Navicula tridentula Krasske	Ogh-ind	al-bi	ind	RI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	_
Navicula spp. Craticula cuspidata	Ogh-unk Ogh-ind	unk al-il	unk ind	S	-	_	_	_	-	_	_	_	1 2	_	_	_	_	_	_	_	_	_	4	5 -
(Kuetz.)D.G.Mann Stauroneis phoenicenteron	Ogh-ind	ind	l-nh	ОU	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	1	_	_	_
(Nitz.)Ehrenberg	O sh umb			0,0					1				-	2	1						-			
Frustulia rhomboides var. crassinervia	Ogn-unk Ogh-hob	ac-il	l-ph		_	_	_	_	-	_	_	_	_	э -	-	_	_	_	1	_	_	_	_	_
(Breb.)Ross			1 1	DC				,											-		,	,		,
Frustulia saxonica Rabenhorst	Ogh-hob Ogh-ind	ac-11	l-ph	P,O	-	_	_	1	_	_	_	_	1	_	_	_	_	_	_	_	1	1	_	1
Brachysira neoexilis	Ogh-hob	al-il	l-ph	U,U	-	_	2	_	_	_	-	_	-	1	_	_	_	_	_	_	_	_	_	_
Lange-Bertalot Cosmioneis pusilla (W.Smith)	Ogh-Meh	ind	ind		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	4	1
Mann & Stickle Diadesmis biceps Arnott ex	Ogh-ind	al-il	ind	RΑT	_	_	2	1	_	1	_	_	_	1	_	_	_	_	_	_	1	_	3	5
Grunow in Van Heurck	Ogh-ind	a]_i]	ind	RAT	_	_	1	_	_	1	1	_	_	1	_	_	_	_	_	_	_	_	_	1
(Grun.ex Van Heurck)D.G.Mann		au 11		DI			1			T	1			1										1
(Grun.)D.G.Mann	Ogn-ind	μια	ma	ιζ1	[-	Ţ	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

表58 珪藻分析結果(3)

					ï			6							0						01	_		
¥在 *25	설	態性		環境	-	05	0	0	10	10	15	16	(7)	20	(2)	94	20	2	4	-	2	c	7	0
裡	恒分	рН	演水	指標種		20 2	8 3	9	10 5	12	15	10	(/) 9	30 10	23	24 12	29 13	3	4	э 16	17	0 18	10	8 20
Luticola minor	Ogh-ind	al-il	ind		-	_	1	-	-	-		-	1	- 10	-	- 12	- 13	-	- 10	- 10	- 17	- 10	- 15	
(R.M.Patrick)Mayama	Ogn mu		ma				т						1											
Luticola mutica (Kuetz.)D.G.Mann	Ogh-ind	al-il	ind	RA,S	-	-	-	2	1	2	3	2	3	1	-	1	1	-	1	3	-	-	2	3
Luticola plausibilis	Ogh-ind	ind	ind		-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(Hustedt ex Simonsen)D.G.Mann	0-1-1-1		1						2					1										1
Neidium ampliatum (Enr.)Krammer	Ogn-ind	ac-11	I-pn	DI	-	-	-	-	3	-	-	-	-	1	-	-	-	-	-	-	-	-	-	1
Neidium bisuicatum (Lagerst.)Cieve	Ogn-ind	ac-11	ina	KI O U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Neidium Iridis (Enr.)Cleve	Ogn-nob	ac-11	ina	0,0	-	-	-	-	-	-	1	-	1	1	-	-	3	1	-	-	-	-	-	-
Colonaia accompile Deale	Ogn-ind	ac-11	I-pn	DAC	1	-	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caloneis aerophila Dock	Ogn-Ind	ac-bi	ina 	KA,S	-	-	1	1	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Caloniels bachun (Grun) Cieve	Ogli-Illu	ai-11	i-pii	DA	-	_	_	1	_	_	_	_	-	_	_	-	_	-	1	_	_	_	1	1
Calonels hyalina Hustedt	Ogn-ind	ind	ind	KA	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1
Carter & Bailev-Watts	Ogn-ind	Ina	Ind		-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caloneis leptosoma	Ogh-ind	ind	l-ph	RB	-	-	-	-	-	-	-	-	1	-	1	-	-	-	-	-	-	-	-	-
Krammer & Lange-Bertalot																								
Caloneis silicula (Ehr.)Cleve	Ogh-ind	al-il	ind		-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Caloneis tenuis (Greg.)Krammer	Ogh-ind	ind	ind	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1
Diatomella balfouriana	Ogh-ind	ind	ind	RB	-	-	2	1	-	3	-	-	-	1	-	-	-	-	3	2	-	-	1	-
Pinnularia alogona	Fub-Mob				_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_
(W.Smith)Krammer	Eun-men				 												1							
Pinnularia acrosphaeria W.Smith	Ogh-ind	al-il	l-ph	0	-	_	-	-	_	-	1	_	1	3	-	_	_	-	_	-	_	1	_	1
Pinnularia anglica Krammer	Ogh-hob	ac-il	ind	Т	-	_	-	-	_	-	-	_	3	-	-	_	_	-	_	-	_	-	_	_
Pinnularia borealis Ehrenberg	Ogh-ind	ind	ind	RA,U	-	_	2	2	3	_	_	_	4	9	1	3	1	_	3	3	_	1	_	1
Pinnularia divergens W.Smith	Ogh-hob	ac-il	l-ph		-	_	_	-	_	-	-	_	-	-	1	_	_	-	_	-	_	-	_	_
Pinnularia gentilis (Donkin)Cleve	Ogh-ind	ac-il	l-bi		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_
Pinnularia gibba Ehrenberg	Ogh-ind	ac-il	ind	O.U	_	_	_	_	1	_	1	_	1	_	_	_	_	_	_	_	_	_	_	_
Pinnularia japonica H.Kobayasi	Ogh-ind	ind	ind	- / -	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
Pinnularia lundii Hustedt	Ogh-ind	ind	l-ph		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Pinnularia nodosa Ehrenberg	Ogh-hob	ac-il	l-ph	0	_	_	_	_	_	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_
Pinnularia rupestris Hantzsch	Ogh-hob	ac-il	ind	0	_	_	_	_	1	_	_	_	3	4	_	_	3	_	_	_	_	2	1	_
Pinnularia schoenfelderi Krammer	Ogh-ind	ind	ind	RB	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	1
Pinnularia schroederij	Ogh-ind	ind	ind	RI	_	_	_	_	_	_	_	_	_	_	_	1	_	_	1	_	_	_	_	1
(Hust.)Krammer	Ogn mu	ind in the second secon	ina	101												1			1					1
Pinnularia similis Hustedt	Ogh-ind	ind	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1
Pinnularia stomatophora	Ogh-ind	ac-il	ind		-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
(Grun.)Cleve																								
Pinnularia stomatophora	Ogh-hob	ac-il	ind		-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
Pinnularia subcapitata Gregory	Ogh-ind	ac-il	ind	RBS	_	_	_	1	_	_	_	_	_	_	_	_	_	_	_	1	_	2	1	2
Pinnularia subcapitata Gregory	Ogh-hoh	ac ii	ind	IXD,5	_	_	_	-	1	_	_	_	_	2	_	_	_	_	_	-	_	-	-	_
Pinnularia subgibba Krainner	Ogh-hoh		l-ph						1	_	_	_	4	1	_	_		_		_				
Hustedt	Ogii-iioo	ac-n	1-pn		 	_	_	_	_	_	_	_	4	1	_	-	_	-	-	_	_	_	_	_
Pinnularia ueno Skvortzow	Ogh-hob	ac-il	l-ph		-	-	-	-	-	-	-	-	1	-	-	-	1	-	-	-	-	-	-	-
Pinnularia viridiformis Krammer	Ogh-ind	ind	l-ph		-	-	-	-	-	-	-	-	2	-	-	-	-	-	-	-	-	-	-	-
Pinnularia viridis (Nitz.)Ehrenberg	Ogh-ind	ind	ind	O,U	-	-	-	-	1	_	-	-	-	1	-	-	-	-	-	-	-	_	-	-
Pinnularia spp.	Ogh-unk	unk	unk		3	-	1	1	3	_	6	2	5	9	1	5	2	-	-	2	1	2	3	1
Sellaphora rectangularis	Ogh-ind	ind	ind		-	_	-	-	_	-	-	_	-	-	-	_	_	-	_	_	_	1	_	_
(Greg.)Lange-B.& Metzeltin																								
Sellaphora seminulum	Ogh-ind	al-il	ind	RB,S	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
(Grun.)D.G.Mann																								
日和伊規 Hantzaahia marina (Dard)の	Meh			D2															1					
Hantzschia marina (Donk.)Grunow	Men			D2 DAU	-	-	-	-	-	-	1	-	-	_	-	-	-	-	1	-	-	-	-	-
Nitzachia aimpnioxys (Ehr.)Grunow	Eu-Ind	ma	111C	KA,U	[1	З	_	_	4	1	_	1	4	1	_	1	_	1	_	_	3	1	_
Nitzschia signia (Kuetz.)W.Smith	Curl-Meh	_1 .7			[_	_	-	-	-	-	-	-	-	_	_	-	T	-	-	-	_	-
Nitzschia brevissima Grunow	Ogn-Meh	ai-11	ind	U T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Nitzschia dissipata (Kuetz.)Grunow	Ogn-ind	ai-11	r-pn	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	-	-
Nitzschia parvuloides Cholnoky	Ogn-ind	ina	ina	DI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Nitzschia terrestris (Pet.)Hustedt	Ogn-ind	ina	ina	KI	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
Nitzschia spp.	Ogh-unk	unk	unk	DI	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	1
Grunow)D.G.Mann	Meh			EI	-	-	-	-	-	-	1	-	-	-	-	-	-	-	1	-	-	-	-	-
Tryblionella levidensis W.Smith	Meh			s	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_
Tryblionella salinarum	Meh			Ũ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1	_	_	_	_	_
(Grunow)Pelletan				Ŭ															-					
Tryblionella debilis Arnott	Ogh-ind	al-il	ind	RB,U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
Epithemia adnata (Kuetz.)Brebisson	Ogh-ind	al-il	ind	Т	-	-	6	12	-	-	-	-	4	-	-	-	-	-	8	8	-	-	1	-
Epithemia turgida (Ehr.)Kuetzing	Ogh-ind	al-il	l-ph	Т	-	-	2	2	-	-	-	-	-	-	-	-	-	-	3	3	1	-	-	1
Epithemia turgida var. westermannii	Ogh-ind	al-il	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	4	-	-	-	-
(Ehr.)Grunow																								
Epithemia spp.	Ogh-unk	unk	unk		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
Khopalodia musculus (Kuetz)O Muller	Meh				-	-	-	-	-	-	1	-	-	-	-	-	-	-	22	-	-	-	-	-
Rhonalodia gibberula (Ebr.)O Muller	Ogh-Meh	al-il	ind	TI II	h -	1	3	23	20	1	1	1	23	28	_	_	7	_	1	1	2	1	_	6
Rhonalodia gibba (Ehr)O Muller	Ogh-ind	al-il	ind	U U	L	-	-	- 20	-	-	_	-	20	-	_	_	_	_	-	1	-	_	_	_
石码paloua giota (Elli.)O.WullCl ק經達箱	Ogn IIId	a 11	ind	Ŭ									4							T				
Autorita arcus Ehrenhorg	Ogh-bob	ind	ind	11	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	1
Functia arcus var bidens Crimeria	Ogh-ind	ac-;1	l_ph	Г	_	_	1	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	-
Lunoua arcus var. Diuens Grunow	logn_und		h bu	I	1	-	T		-													-		

表59 珪藻分析結果(4)

			. 4215 Jul.						(1)						2						2'			
種	類	9	E悲性		環境 指標種	5	25	8	9	10	12	15	16	(7)	30	23	24	29	3	4	5	17	6	7	8
		塩分	pН	流水	1日10年1王	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Eunotia bigibba	a Kuetzing	Ogh-hob	ac-bi	ind	RB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-
Eunotia bilunai	ris (Ehr.)Mills	Ogh-hob	ac-bi	ind	U	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-
Eunotia biseria H.Kobayasi,K.A	ntoides Ando & T.Nagumo	Ogh-ind	ind	ind	Т	-	-	-	1	-	2	1	-	-	-	-	-	-	-	-	-	-	-	-	-
Eunotia fallax .	A.Cleve	Ogh-hob	ac-bi	ind	RB	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1
Eunotia flexuos	sa (Breb.)Kuetzing	Ogh-hob	ac-il	l-ph	0	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Eunotia formic	a Ehrenberg	Ogh-hob	ac-il	l-bi	Т	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Eunotia implica Noepel & Lang	ata ge-Bertalot	Ogh-hob	ac-il	ind	0	-	-	-	1	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-	-
Eunotia incisa	W.Smith ex Gregory	Ogh-hob	ac-il	ind	O,U	-	-	7	8	-	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-
Eunotia minor	(Kuetz.)Grunow	Ogh-hob	ind	ind	O,T	-	-	2	7	-	1	-	-	-	-	-	-	-	-	-	2	-	-	1	-
Eunotia muscio Noerpel & Lan	cola var. tridentula age-Bertalot	Ogh-hob	ac-il	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
Eunotia paludo	osa Grunow	Ogh-hob	ac-il	ind		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-
Eunotia praeru	ıpta Ehrenberg	Ogh-hob	ac-il	l-ph	RB,O,T	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	1
Eunotia spp.		Ogh-unk	unk	unk		-	3	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-
海水生種						0	0	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0
海水~汽水生種	重					0	0	0	0	1	0	1	0	0	1	0	0	1	0	6	0	0	0	0	0
汽水生種						0	0	0	0	0	0	2	0	0	0	0	0	0	0	62	1	0	0	0	0
淡水~汽水生種	Í.			_		1	1	3	23	29	1	1	1	23	28	0	0	7	0	1	1	2	2	4	7
淡水生種						11	4	130	182	29	55	49	12	80	74	16	20	21	1	34	49	111	31	101	100
珪藻化石総数						12	5	133	205	60	56	54	13	103	104	16	20	29	1	103	51	113	33	105	107
凡例																									
H.R.: 塩分濃度)	に対する適応性		pH:水	:素イオ:	/濃度に対	する	適応性	ŧ				С.	R. :	流水に	対する	適応作	生								
Euh	:海水生種		al-bi	:	真アルカ	リ性種	重					1-	bi	:]	真止水	生種									
Euh-Meh	:海水生種-汽水生種		al-il	:	好アルカ	リ性種	重					1-	ph	: \$	好止水	生種									
Meh	: 汽水生種		ind	:	pH 不定性	種						in	nd	: i	流水 不:	定性種	Í.								
Ogh-Meh	: 淡水-汽水生種		ac-il	:	好酸性種							r-	ph	: ţ	好流水	生種									
0gh-hil	: 貧塩好塩性種		ac-bi	:	真酸性種							r-	bi	:]	真流水	生種									
0gh-ind	: 貧塩不定性種		unk	:	pH 不明種							un	ık	: i	流水不 「	明種									
0gh-hob	: 貧塩嫌塩性種																								
0gh-unk	: 貧塩不明種																								

環境指標種群

A:外洋指標種、B:内湾指標種、C1:海水藻場指標種、D1:海水砂質干渴指標種、D2:汽水砂質干渴指標種、E1:海水泥質干渴指標種、E2:汽水泥質干渴指標種(以上は小杉,1988)

E 2:1へ76:62 〒1931時電低、M:湖沼溶遊性種、N:湖沼沼沢湿地指標種、O:沼沢湿地付着生種、P:高層湿原指標種(以上は安藤,1990) S:好汚濁性種、U:広域適応性種、T:好清水性種(以上はAsai and Watanabe,1995) R:陸生珪藻(RA:A群, RB:B群, RI:未区分、伊藤・堀内,1991)

Pseudopodosira kosugiiは、塩分濃度12~2%の汽水化した塩性湿地などの泥に付着生育することか らそのような環境を指標することのできる汽水泥質干潟指標種、Cocconeis scutellumは塩分濃度35~ 12‰の海域で海藻(草)に付着生育することからそのような環境を指標することのできる海水藻場指標 種である。

試料番号17は、これまでと同様に水生珪藻が約90%と優占する。生態性の特徴は、貧塩不定性種と 貧塩嫌塩性種、好+真酸性種と好+真アルカリ性種、好+真止水性種が優占あるいは多産する。主要 種は、高層湿原指標種のFragilariforma exiguaが約50%と優占し、湖沼沼沢湿地指標種のAulacoseira ambiguaが約20%と多産する。これに付随して、好止水性で偶来性浮遊性種のPseudostaurosira brevistriata、Staurosira venterなどが産出する。

試料番号19は、生態性や群集が試料番号3、4に近似する。生態性では、貧塩不定性種と貧塩嫌塩 性種、好+真酸性種と好+真アルカリ性種、流水不定性種と好+真止水性種が優占あるいは多産する。 主要種は、高層湿原指標種のFragilariforma exiguaが約30%と優占し、湖沼沼沢湿地指標種の Aulacoseira ambigua、流水不定性で付着性のDiploneis ovalis、淡水~汽水生種のCosmioneis pusilla、 流水指標種のPlanothidium lanceolatumなどが産出する。

試料番号20は、とくに多産するものはないが、前試料で産出したような高層湿原指標種の Fragilariforma exigua、湖沼沼沢湿地指標種のAulacoseira ambigua、流水不定性種のDiploneis ovalis、

主要珪藻化石群の層位分布

第153図

表60 花粉分析結果

								SS2										SS2'			
	種 類				A	A'断面]	B-B'断ī	ī				C	C−C'断	面		
		1)-5	1)-25	1)-8	1)-9	①-10	1)-12	1)-15	①-16	2-(7)	2-30	2-23	2-24	2-29	-3	-4	-5	-17	-6	-7	-8
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
木本	、花粉																				
	ツガ属	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
	マツ属複維管束亜属	1	1	70	5	3	-	1	-	1	-	-	-	-	120	83	49	2	-	-	3
	マツ属(不明)	1	1	120	10	2	1	-	-	1	4	1	1	-	167	148	153	6	1	2	4
	スギ属	-	3	37	-	-	1	-	-	-	-	-	-	-	8	4	2	-	-	-	-
	ヤマモモ属	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
	ブナ属	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-
	コナラ属コナラ亜属	-	-	1	-	-	-	-	-	-	-	-	-	-	2	2	4	1	-	-	-
	シイ属	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	ニレ属 – ケヤキ属	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	-	-	-	-	-
	モチノキ属	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	4	-	-	-	-
	ツツジ科	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
	イボタノキ属	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	1	-	-	-	-
	タニウツギ属	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
草本	花粉																				
	イネ科	-	1	1	-	-	-	-	-	-	1	-	-	-	2	1	16	2	-	-	-
	カヤツリグサ科	-	-	2	-	-	-	-	-	-	-	-	-	-	-	3	-	-	-	-	-
	ソバ属	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
	ナデシコ科	-	-	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	アブラナ科	-	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	アリノトウグサ属	-	-	1	-	-	-	-	-	-	-	-	-	-	1	2	12	-	-	-	-
	セリ科	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
	ヨモギ属	-	-	2	-	-	-	-	-	1	-	-	-	-	-	-	1	-	-	-	-
	キク亜科	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	9	-	-	-	-
	タンポポ亜科	-	-	2	1	-	-	-	-	-	-	-	-	-	-	1	6	2	-	-	-
不明	目花粉																				
	不明花粉	-	1	2	-	-	-	-	-	-	-	-	-	-	2	1	6	-	-	-	-
シダ	"類胞子																				
	ヒカゲノカズラ属	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1	-	-	-	-
	ゼンマイ属	-	-	1	-	1	-	1	-	-	-	-	-	-	1	-	1	-	-	-	-
	イノモトソウ属	-	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2	1
	他のシダ類胞子	1	5	112	54	19	19	17	5	22	8	10	1	2	24	46	444	19	1	10	10
合	計 · · · ······		_																		_
	木本花粉	2	5	228	15	5	3	3	0	2	4	1	1	0	299	238	217	9	1	2	7
	草本花粉	0	1	9	1	1	0	0	0	1	1	0	0	0	3	9	46	4	0	0	0
	个明花粉	0	1	2	0	0	0	0	0	0	0	0	0	0	2	1	6	0	0	0	0
	シダ類胞子	1	6	113	54	20	19	18	5	22	8	10	1	2	25	46	446	19	1	12	11
	台訂(个明を除く)	3	12	350	70	26	22	21	5	25	13	11	2	2	327	293	709	32	2	14	18

淡水~汽水生種のRhopalodia gibberula、などが産出する。

化石の産出の少なかった試料番号1、2、5、6、7、8、11、12、13、14、16、18は、その前後 の試料と同様なものが産出する。

(2)花粉分析

結果を表60、第154図に示す。花粉化石の産状は、試料により大きく異なる。以下、断面ごとに述べる。

・A-A'断面

試料番号3からのみ、花粉化石が豊富に産出するが、保存状態は悪い。検出された花粉は木本花粉 が優占し、マツ属が多産する。次いでスギ属が多く産出し、コナラ属コナラ亜属をわずかに伴う。草 本花粉は少ないながらも、イネ科、カヤツリグサ科、アブラナ科、アリノトウグサ属、ヨモギ属、タ ンポポ亜科が産出する。

試料番号3以外の7試料は、花粉化石はほとんど、あるいは全く検出されなかった。検出された花 粉化石の保存状態も悪い。なお、木本花粉ではマツ属、スギ属、ブナ属、シイ属、イボタノキ属が、

草本花粉ではイネ科、ナデシコ科、タンポポ亜科が、わずかに認められる程度である。

なお、いずれの試料も花粉化石の保存状態が悪く、栽培種のイネ属に同定できるような個体は確認 できなかった。

・B-B'断面

試料番号9~13のいずれも、花粉化石の産状が悪く、わずかにマツ属、イネ科、ヨモギ属が数個体 検出されたにとどまる。なお、いずれの試料も花粉化石の保存状態が悪く、栽培種のイネ属に同定で きるような個体は確認できなかった。

・C-C'断面

試料番号14~16では花粉化石が豊富に産出するが、保存状態はいずれも悪い。花粉化石群集は3 試 料とも概ね類似しており、木本花粉が優占する。木本花粉ではマツ属が優占し、スギ属、コナラ亜属、 モチノキ属等を伴う。草本花粉はイネ科、カヤツリグサ科、アリノトウグサ属、キク亜科、タンポポ 亜科等が認められる。また、わずかではあるが、栽培種のソバ属が、試料番号16より確認された。

試料番号17~20では、マツ属、コナラ亜属、イネ科、タンポポ亜科が数個体検出される程度である。 なお、いずれの試料も花粉化石の保存状態が悪く、栽培種のイネ属に同定できるような個体は確認 できなかった。

(3)植物珪酸体分析

結果を表61、第155図に示す。各試料からは、主に葉部に形成される植物珪酸体が検出される。イ ネ属などの籾(穎)に形成される植物珪酸体はいずれの試料からも認められない。

以下に、各断面で見られた土層での産状について述べる。

・A-A'断面(SS2①)

試料番号1では、検出される分類群が少ない。その中で、クマザサ属を含むタケ亜科の産出が目立 つ。

試料番号2でも、クマザサ属を含むタケ亜科の産出が目立つ。ヨシ属など湿潤な場所に生育する分 類群は認められない。

試料番号3、4、5では同様な産状が見られ、クマザサ属を含むタケ亜科の産出が目立ち、メダケ 属もわずかに認められる。また栽培植物であるイネ属も産出し、葉部の短細胞珪酸体や機動細胞珪酸 体が見られる。その含量は、短細胞珪酸体が300~500個/g、機動細胞珪酸体が400~500個/gである。 この他に、ヨシ属、ススキ属、イチゴツナギ亜科、シバ属などがわずかあるいは稀に認められる。

試料番号6では、クマザサ属やメダケ属を含むタケ亜科の産出が目立ち、ヨシ属も多い。イネ属も 産出するが、機動細胞珪酸体のみが見られ、その含量は約100個/gである。

試料番号7と8では同様な産状が見られ、クマザサ属やメダケ属を含むタケ亜科の産出が目立つ。 イネ属も産出する。試料番号7では、短細胞珪酸体が約100個/g、機動細胞珪酸体が約200個/g、試 料番号8では機動細胞珪酸体のみで約200個/gである。またヨシ属やイチゴツナギ亜科が稀に認めら れる。

・B-B'断面(SS2②)

試料番号9では、検出される分類群が少ない。その中で、クマザサ属を含むタケ亜科の産出が目立 ち、メダケ属もわずかに見られる。

¢nī
体
酸
珪
物
植
1
ġ.

表61 植物珪酸体;	画																			(個/g)
-							SS2	-									SS2			
新聞				A-A	断面					В	-B'断面					U	C'所回			
77 . 损 仲	<u>9</u> -0	①-25	<u>1</u> -8	6-(T)	0-10	0-12	(I)-15	<u>1</u> –16	(7)	2)-30	2^{-23}	2-24	2-29	-92 -	-4	<u>1</u> 2–	-17	9-	2-	8-
	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20
イネ科葉部短細胞珪酸体																				
イネ族イネ属	I	I	500	300	400	I	100	1		200				1		300	3,000	1		400
クマザサ属	5,600	6,100	3,100	3,000	7,200	3,400	4,100	4,200 5	3,400	4,900	5,300 2	900	.900	.700 5	200	2,800	2,700	2,200	3,800	1,600
メダケ属	I	I	1,000	600	200	400	100	100 -		200	- 000			300 7	.00	200	400	1	1	I
タケ亜科	5,800	7,400	6,500	6,500	9,200	7,600	5,800 {	5,800 (6,600	10,800	9,100 5	.700 3	,600 4	1,000	0.900	000001	9,100	3,400	3,400	2,000
ヨシ属	I	I	300	I	1	1,000	1										100	1	1	300
ウシクサ族コブナグサ属	I	I	300	I	I	I	1	1	1							4.	400	1		I
ウシクサ族ススキ属	I	I	300	100	I	I		1	1					700	- 00		300	I	1	I
イチゴツナギ亜科	I	I	1,300	600	200	100	1	100 -			- 009			000	00	200	1,200	1		1
不明	4,800	8,200	10,700	6,200	7,400	5,100	4,200	4,800 (6,100 (6,300 5	5,100 1	006	00.	7,600 5	9 000	3,800]	11,200	900	1,800	1,200
イネ科葉身機動細胞珪酸体																				
イネ族イネ属	I	1	500	400	500	100	200	200	1	300	300			1			1,400	1	100	100
クマザサ属	5,500	6,100	3,400	2,000	7,400	2,800	3,800 4	4,400 :	3,600 [5	5,000	2,000	200 1	,600 1	000	5,700 2	2,600 2	2,100	3,000	3,400	1,600
メダケ属	I	1	1,500	1,700	200	1,000	100		100 -	-	+00			¥00	1,200	006	300	1	100	1
タケ亜科	7,800	6,200	8,800	10,000	9,500	13,300	7,200 8	8,000 (6,200 5	9,600	10,700	300 2	:900 E	3,300 1	5,300 7	3 006'2	3,100	6,800	5,200	5,300
ヨシ属	I	I	300	100	200	2,200	100		1								100	100		100
ウシクサ族	I	I	300	I	I	300			1	1				300	000	008	100	I	1	I
シン属	I	I	500	400	200	I				<u> </u>				300	000	002	1,200			
不明	6,500	9,500	12,700	6,900	9,300	9,900	5,700 {	5,700	7,300 8	8,700 9	3 006.6	,100 4	1,500 6	,000	7,100 9	9,300 7	7,100	7,400	5,700	5,600
合計																				
イネ科葉部短細胞珪酸体	16,200	21,700	24,000	17,300	24,400	17,700	14,300	15,100	16,100 2	22,300 2	20,600 1	0,500 6	,200 1	5,400 2	7,100 2	23,100 2	28,300	6,500	8,900	5,500
イネ科葉身機動細胞珪酸 体	19,700	21,800	27,900	21,700	27,300	29,700	17,200	18,300	17,200	23,600	26,300 1	3,600 5	,000	1,900 4	3,300	5 008'12	20,700	17,300	14,500	12,800
植物珪酸体含量	35,900	43,500	51,900	39,000	51,700	47,400	31,500	33,400 5	33,300 4	45,900	16,900 2	4,100 1	5,200 2	7,300 7	0,400	14,900	49,000	23,800	23,400	18,300
珪化組織片																				
イネ属短細胞列	I	-	I	1	-	-	-	- -	, _	-	- -	1	-	1	-	-	* *	_	_	*
含量は、10の位で丸めてい、	る (100単	位にする	()																	
合計は各分類群の丸めない	数字を合	計した後	後に丸め.	ている																
- : 未検出. * : 検出. * * : 多	512																			

第1節 殿河内ウルミ谷遺跡の自然科学分析

試料番号10でも、クマザサ属を含むタケ亜科の産出が目立ち、メダケ属もわずかに見られる。また イネ属が産出し、その含量は短細胞珪酸体が約200個/g、機動細胞珪酸体が約300個/gである。

試料番号11と12でも、クマザサ属を含むタケ亜科の産出が目立つ。なお、試料番号11ではイネ属も 産出し、機動細胞珪酸体のみが見られ、その含量は約300個/gである。

試料番号13では、検出される分類群が少なく、その中でクマザサ属を含むタケ亜科の産出が目立つ。

-212 -

・C-C'断面(SS2')

試料番号14ではクマザサ属やメダケ属を含むタケ亜科の産出が目立ち、ススキ属、イチゴツナギ亜 科、シバ属などが見られる。

試料番号15と16でもクマザサ属やメダケ属を含むタケ亜科の産出が目立ち、イチゴツナギ亜科やシ バ属などが見られる。試料番号16ではイネ属も産出し、短細胞珪酸体のみが約300個/gである。

試料番号17ではクマザサ属やメダケ属を含むタケ亜科の産出が目立つものの、イネ属の含量も多く、 短細胞珪酸体が約3,000個/g、機動細胞珪酸体が約1,400個/gである。また、ヨシ属、ススキ属、イ チゴツナギ亜科、シバ属なども見られる。

試料番号18と19では、クマザサ属やメダケ属を含むタケ亜科の産出が目立つ。試料番号18ではヨシ 属、試料番号19ではイネ属の機動細胞珪酸体も見られる。

試料番号20ではクマザサ属を含むタケ亜科の産出が目立ち、イネ属も産出する。その含量は、短細 胞珪酸体が約400個/g、機動細胞珪酸体が約100個/gである。またヨシ属もわずかに認められる。

4 考察

(1) 堆積環境

珪藻化石は、河道の試料を中心に検出されたが、旧地表面とされる試料では状態が悪く、産出数も 少ない傾向がある。

地点・試料別に結果をみると、SS2'-7,8は、造成土や旧表土とされる試料であるが、珪藻化石は比較的よく検出される。これらの試料では、高層湿原指標種のFragilariforma exiguaと湖沼沼沢湿地指標種のAulacoseira ambiguaが比較的多く、流水性種がほとんど含まれないことが特徴である。これらの種を中心とした珪藻化石群集からは、多少の水位がある湿地や湿原のような場所が推定される。 遺跡の立地を考慮すれば、谷内に湿地的な環境がみられた可能性がある。SS2'-17もSS2'-7,8とよく似た組成を示しており、同様に湿地のような環境であったと考えられる。一方、SS2'-4は、汽水生種が優占しており、淡水性種の割合が低い。この珪藻化石群集だけをみれば、干潟堆積物に特徴的な組成を示している。海岸からの距離を考えると、中世の海岸線に近い場所とは考えにくく、試料の由来については調査時の状況も含めて検討する必要がある。

SS2①-8,9は、高層湿原指標種のFragilariforma exiguaと湖沼沼沢湿地指標種のAulacoseira ambiguaが多産し、沼沢湿地付着生種のEunotia incisaなどを伴う。この珪藻化石群集は、SS2-7,8 でみられた群集とよく似ており、湿地的な環境が推定される。

一方、SS2②-(7),30は、塩分を含む水域や塩類の豊富な電気伝導度の高い水域に多産する Rhopalodia gibberulaが優占し、Pinnularia rupestrisなどの沼沢湿地付着生種群を伴う。また、流水 性種がほとんど検出されない。この珪藻化石群集からは、塩分や塩類の集積し易い沼沢地あるいは湿 地のような環境が推定される。

(2)古植生

花粉分析では、中世以降の河川とされるSS2①-8(試料番号3)、SS2-5,-4(試料番号16,15)、 および旧表土とされるSS2-3(試料番号14)で花粉化石が産出できるが、他はほとんど検出されてい ない。一般的に花粉やシダ類胞子の堆積した場所が、常に酸化状態にあるような場合、花粉は酸化や 土壌微生物によって分解・消失するとされている(中村,1967;徳永・山内,1971;三宅・中越,1998など)。わずかに検出される花粉化石の保存状態をみると、花粉外膜が破損・溶解など、いずれも保存 状態が悪いことから、堆積後の経年変化により分解・消失した可能性がある。

一方、植物珪酸体分析では、花粉化石が産出しない層準でも産出しており、葉部短細胞珪酸体と葉 身機動細胞珪酸体の両方でクマザサ属やメダケ属を含むタケ亜科の産出が目立つ。タケ亜科の植物珪 酸体は他のイネ科と比較して風化に強く、また生産量の多い点がこれまでの研究から指摘されており (近藤,1982;杉山・藤原,1986)、他の種類よりも残留しやすいことが知られている。そのため、調査 した土層についてもタケ亜科が他の分類群よりも残留したために、その産出が目立つ結果になった可 能性がある。少なくとも各時期に調査区の周辺や河川の上流域、後背の斜面地などにクマザサ属やメ ダケ属を含むタケ亜科の生育がうかがえる。

中世以降の河川とされるSS2①-8、SS2-5,-4と、旧表土とされるSS2-3では、花粉化石は検 出されているが、全体的に保存状態が悪く、比較的分解に強い花粉や、分解が進んでも同定可能な花 粉が多い。これらの土層でも経年変化の影響を受けており、分解に強い花粉が選択的に残された可能 性がある。その点を考慮して、古植生について検討する。

中世以降の河川、および旧表土の花粉化石群集が概ね類似しており、木本類が優占し、マツ属によ り占められる。このうち亜属まで同定できたものは、全て複維管束亜属であった。マツ属複維管束亜 属(いわゆるニヨウマツ類)は生育の適応範囲が広く、尾根筋や湿地周辺、海岸砂丘上など他の広葉樹 の生育に不適な立地にも生育が可能である。また、極端な陽樹であり、やせた裸地などでもよく発芽 し生育することから、伐採された土地などに最初に進入する二次林の代表的な種類でもある。この結 果から、周辺に二次林や植林・海岸植生などとして、マツ属が存在していたと推測される。その他の 種類ではスギ属、コナラ属コナラ亜属、ニレ属-ケヤキ属、モチノキ属等が検出された。このうち、 スギ属などは湧水部や低湿地などに、コナラ亜属、ニレ属-ケヤキ属などは下市川をはじめとする周 辺河川沿いなどに生育していた可能性がある。モチノキ属は林縁部などに生育する種群であり、他に も同様のツツジ科、イボタノキ属、タニウツギ属等が検出されることから、河川集水域の林縁植生に 由来する可能性がある。

草本類では少ないながらも、イネ科、カヤツリグサ科、アリノトウグサ属、キク亜科、タンポポ亜 科など、開けた明るい場所に生育する、いわゆる「人里植物」に由来するものが認められる。このう ち、イネ科について植物珪酸体分析結果をみると、クマザサ属やメダケ属を含むタケ亜科、イネ属、 イチゴツナギ亜科が各試料で認められる他、SS2-3でススキ属、SS2①-8でヨシ属、コブナグサ属 が検出されており、これらのイネ科植物が周囲に生育していた可能性がある。クマザサ属やメダケ属 は、広葉樹林の林床等に生育する種類を含む。ススキ属には、草原に生育する種類が含まれており、 周辺で草地食性を形成していた可能性がある。一方、ヨシ属は、SS2の中世および中世以降の河川 堆積物にのみ認められることから、中世および中世以降の河畔等にヨシ原を形成していた可能性があ る。なお、ヨシ属の産出個数をみると、①-12でやや多いものの、他は1000個未満であることから、 試料採取地点よりも上流部の離れた位置に生育していた可能性がある。

また、花粉分析ではイネ属を区別できなかったが、植物珪酸体分析では、イネ属が断続的に検出さ れている。また、SS2-5からは、栽培種であるソバ属の花粉が検出されていることから、中世の遺 跡周辺でイネやソバの栽培が窺える。 Ⅳ 赤外分光分析

1 試料

試料は、須恵器小型長頸壺545(No.240・465)の内部から採取した黒色物質である。採取試料は微小 な塊状粒子で、表面は光沢感があり、観察した範囲では組織構造等は認められない。

2 分析方法

(1)赤外線分光分析の原理

有機物を構成している分子は、炭素や酸素、水素などの原子が様々な形で結合している。この結合 した原子間は絶えず振動しているが、電磁波のようなエネルギーを受けることにより、その振動の振 幅は増大する。この振幅の増大は、その結合の種類によって、ある特定の波長の電磁波を受けたとき に突然大きくなる性質がある。この時に、電磁波のエネルギーは結合の振動に使われて(すなわち吸 収されて)、その物質を透過した後の電磁波の強度は弱くなる。

有機物を構成している分子における結合の場合は、電磁波の中でも赤外線の領域に入る波長を吸収

する性質を有するものが多い。そこで、赤 外線の波長領域において波長を連続的に変 えながら物質を透過させた場合、さまざま な結合を有する分子では、様々な波長にお いて、赤外線の吸収が発生し、いわゆる赤 外線吸収スペクトルを得ることができる。 通常、このスペクトルは、横軸に波数(波 長の逆数cm⁻¹で示す)、縦軸に強度を取っ た曲線で表されることが多い。したがって、 既知の物質において、どの波長でどの程度 の吸収が起こるかを調べ、その赤外線吸収

表62 FT-IR测定条件

光学系の構成	
光学系	Avatar System 370
光源	IR
ビームスプリッタ	KBr
測定アクセサリ	Centaulus
検出器	MCT/A
測定情報	
サンプルスキャン回数	64
バックグラウンドスキャン回数	64
分解能	4.000
サンプルゲイン	自動
ミラー速度	1.8988
アポダイゼーション	Happ-Genzel
位相補正	Mertz

スペクトルのパターンを定性的に標本化し、これと未知物質の赤外線吸収スペクトルのパターンとを 定性的に比較することにより、未知物質の同定をすることもできる(山田,1986)。

(2)赤外線吸収スペクトルの測定

微量採取した試料をダイヤモンドエクスプレスにより加圧成型した後、顕微FT-IR装置(サーモエ レクトロン(株)製Nicolet Avatar 370,Nicolet Centaulus)を利用し、測定を実施した。なお、赤外線 吸収スペクトルの測定は、作成した試料を鏡下で観察しながら測定位置を絞り込み、アパーチャでマ スキングした後、透過法で測定した。得られたスペクトルはベースライン補正などのデータ処理を施 した後、吸光度(ABS)で表示している。本調査における測定条件の詳細を表62に示す。

3 結果および考察

FT-IRスペクトルを第156図に示す。なお、比較資料として実測した炭化材、天然アスファルトおよび漆のスペクトルを図中に併記している。

須恵器長頸壺内部から採取した付着黒色物質を顕微システム下で観察しながら測定した結果、測定

第156図 FT-IRスペクトル

部位によって赤外線吸収特性が大きく変化する傾向を認めた。測定1,2としてその特性を示したが、 どちらも3400cm⁻¹、2950cm⁻¹、2930cm⁻¹、2860cm⁻¹、1700cm⁻¹、1600cm⁻¹、1450cm⁻¹、1380cm⁻¹、1260cm⁻¹ 付近に吸収が認められるものの、スペクトルパターンは大きく異なる。

両スペクトルを当社のスペクトルデータベースでサーチした結果では、測定1は炭化材などの炭化 物、測定2は漆や天然アスファルトとマッチング率が高い結果が得られたが、測定部位によって赤外 線吸収特性が一様ではないため信頼性は低い。特に、採取した黒色物質の形状が微小な塊状粒子であ ったことを加味すれば測定2においてマッチング率が高かった漆の可能性は極めて低いと思われる。

なお、漆とアスファルトではクロロホルム(CHCl₃)に対する溶解性が異なり、耐性の高い漆に対し てアスファルトは容易に溶解する。念のため、採取した黒色物質をクロロホルムに浸漬して溶解性を 確認した結果では、不溶残滓が相当量残るものの、溶媒が褐色化し、クロロホルムに溶解する成分も 含むことを認めた。抽出溶媒をアルミ蒸着ガラスに滴下し溶媒を揮散させ反射法による測定を実施し た結果では、固形物で測定した測定2と比べてより天然アスファルトに近いスペクトルパターンが得 られたが、天然アスファルトには認められない1280cm⁻¹付近の吸収に相違点も認められた。

光沢感を持つ微小塊状の黒色物質は一見、炭化物のようにも見え、測定1のスペクトルはこれを裏付ける結果とも捉えることも出来るが、一方で測定2や溶媒抽出物のスペクトルにおいて顕著な3060 cm⁻¹、2950cm⁻¹、2930cm⁻¹、2860cm⁻¹付近の芳香環やメチル基およびメチレン基のC-H伸縮振動および1450cm⁻¹、1380cm⁻¹付近のC-H変角振動は炭化水素を豊富に含むことを示す。漆以外では天然アスファルトとマッチング率が高い結果が得られたものの、黒色物質が加熱によって軟化しなかったことや、加圧によって容易に粉粒状に砕けるなどの物性から、アスファルトとも考えがたい。

現状、簡易的な調査手法である赤外分光分析のみでは、付着黒色物質の本質を見極めることは難しい。今後、付着黒色物質に対して、薄片作製による構造の観察や、より詳細な成分分析を実施する等の調査が必要と考える。

【参考文献】

```
安藤一男,1990,淡水産珪藻による環境指標種群の設定と古環境復元への応用.東北地理,42,73-88.
```

- Asai, K. & Watanabe, T.,1995, Statistic Classification of Epilithic Diatom Species into Three Ecological Groups relating to Organic Water Pollution(2) Saprophilous and saproxenous taxa. Diatom, 10, 35–47.
- 原口和夫・三友清史・小林 弘,1998,埼玉の藻類 珪藻類.埼玉県植物誌,埼玉県教育委員会,527-600.

```
林 昭三,1991,日本産木材 顕微鏡写真集,京都大学木質科学研究所,
```

- 伊東隆夫,1995,日本産広葉樹材の解剖学的記載I.木材研究·資料,31,京都大学木質科学研究所,81-181.
- 伊東隆夫,1996,日本産広葉樹材の解剖学的記載Ⅱ.木材研究・資料,32,京都大学木質科学研究所.66-176.
- 伊東隆夫,1997,日本産広葉樹材の解剖学的記載Ⅲ.木材研究・資料,33,京都大学木質科学研究所,83-201.
- 伊東隆夫,1998,日本産広葉樹材の解剖学的記載Ⅳ.木材研究・資料,34,京都大学木質科学研究所,30-166.
- 伊東隆夫,1999,日本産広葉樹材の解剖学的記載V.木材研究・資料,35,京都大学木質科学研究所,47-216.
- 伊藤良永・堀内誠示,1991,陸生珪藻の現在に於ける分布と古環境解析への応用.珪藻学会誌,6,23-45.
- 岸本定吉・杉浦銀治,1980,日曜炭やき師入門.総合科学出版,250p.
- 小林 弘・出井雅彦・真山茂樹・南雲 保・長田啓五,2006,小林弘珪藻図鑑.第1巻,㈱内田老鶴圃,531p.
- 近藤 錬三,1982,Plant opal分析による黒色腐植層の成因究明に関する研究.昭和56年度科学研究費(一般研究C)研究 成果報告書,32p.

近藤錬三,2010,プラント・オパール図譜.北海道大学出版会,387p.

小杉正人,1988,珪藻の環境指標種群の設定と古環境復原への応用.第四紀研究,27,1-20.

Krammer, K.,1992, PINNULARIA.eine Monographie der europaischen Taxa. BIBLIOTHECA DIATOMOLOGICA BAND26. J.CRAMER, 353p.

- Krammer- K. & Lange-Bertalot, H.,1986,Bacillariophyceae.1.Teil: Naviculaceae. Suesswasserflora von Mitteleuropa. Band2/1. Gustav Fischer Verlag, 876p.
- Krammer, K. & Lange-Bertalot, H.,1988,Bacillariophyceae.2.Teil: Epithemiaceae,Bacillariaceae, Surirellaceae. Suesswasserflora von Mitteleuropa.Band2/2. Gustav Fischer Verlag, 536p.
- Krammer, K. & Lange-Bertalot, H.,1991a,Bacillariophyceae.3.Teil: Centrales,Fragilariaceae,Eunotiaceae. Suesswasserflora von Mitteleuropa.Band2/3. Gustav Fischer Verlag, 230p.
- Krammer, K. & Lange-Bertalot, H.,1991b,Bacillariophyceae.4.Teil: Achnanthaceae,Kritsche Ergaenzungen zu Navicula(Lineolatae) und Gomphonema. Suesswasserflora von Mitteleuropa.Band2/4. Gustav Fischer Verlag, 248p.
- Lowe, R. L.,1974,Environmental Requirements and pollution Tolerance of Fresh-water Diatoms. Environmental Monitoring Ser. EPA Report 670/4-74-005. Nat. Environmental Res. Center Office of Res. Develop., U.S. Environ. Protect. Agency, Cincinati. 334p.
- 三宅 尚・中越信和,1998,森林土壌に堆積した花粉・胞子の保存状態.植生史研究,6,15-30.
- 中村 純,1967,花粉分析.古今書院,232p.
- 中村 純,1980,日本産花粉の標徴 I Ⅱ(図版).大阪市立自然史博物館収蔵資料目録 第12,13集,91p.
- Richter H.G., Grosser D., Heinz I. and Gasson P.E. (編), 2006, 針葉樹材の識別 IAWAによる光学顕微鏡的特徴リスト . 伊東隆夫・藤井智之・佐野雄三・安部 久・内海泰弘(日本語版監修), 海青社, 70p. [Richter H.G., Grosser
 - D.,Heinz I. and Gasson P.E.(2004)IAWA List of Microscopic Features for Softwood Identification].
- Round, F. E., Crawford, R. M. & Mann, D. G.,1990, The diatoms. Biology & morphology of the genera. Cambridge University Press, Cambridge. 747p.
- 島地 謙·伊東 隆夫,1982,図説木材組織.地球社,176p.
- 島倉巳三郎,1973,日本植物の花粉形態.大阪市立自然科学博物館収蔵目録 第5集,60p.
- 杉山真二,2000,植物珪酸体(プラント・オパール).辻 誠一郎(編著)考古学と自然科学3 考古学と植物学,同成社,189-213.
- 杉山真二・藤原宏志,1986,機動細胞珪酸体の形態によるタケ亜科植物の同定-古環境推定の基礎資料として-.考古 学と自然科学,19,69-84.
- 田中正昭,2002,日本淡水産動・植物プランクトン図鑑.584p.
- 徳永重元・山内輝子,1971,花粉・胞子.化石の研究法,共立出版株式会社,50-73.
- Vos, P. C. & H. de Wolf,1993, Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects. Hydrobiologica, 269/270,285-296.
- Wheeler E.A.,Bass P. and Gasson P.E.(編),1998,広葉樹材の識別 IAWAによる光学顕微鏡的特徴リスト.伊東隆夫・藤 井智之・佐伯 浩(日本語版監修),海青社,122p. [Wheeler E.A.,Bass P. and Gasson P.E.(1989)IAWA List of Microscopic Features for Hardwood Identification].
- Witkowski, A., Lange-Bertalot, H. & Metzeltin, D.,2000,Diatom flora of Marine coast I. Iconographia Diatomologica7. A.R.G.Gantner Verlag K.G., 881p.
- 渡辺仁治·浅井一視·大塚泰介·辻 彰洋·伯耆晶子,2005,淡水珪藻生態図鑑.内田老鶴圃,666p.
- 山田富貴子,1986,赤外線吸収スペクトル法,「機器分析のてびき第1集」.化学同人,1-18.
- 柳沢幸夫,2000,計数・同定. 化石研究会(編)「化石の研究法 採集から最新の解析法まで 」,共立出版株式会社,49-50.
- Zong,Y. & B.P.Horton,1998,Diatom zones across intertidal flats and costal saltmarshes in britain.Diatom research,13,2,375-394.

3. 取上No.788①(試料No.3) a:炭化材の外観, b:炭化材上面観, c:測定試料

- 4. 取上No.1471①(試料No.4) a:炭化材の外観, b:測定試料
- 5. 取上No.1358①(試料No.5) a:炭化材の外観, b:測定試料

文中写真12 放射性炭素年代測定試料(1)

6. 取上No.1235①(試料No.6) a:炭化材の外観, b:炭化材上面観, c:測定試料
7. 取上No.1473①(試料No.7) a:炭化材の外観, b:測定試料
8. 取上No.1473②(試料No.8) a:炭化材の外観, b:測定試料
9. 取上No.1473③(試料No.9) a:炭化材の外観, b:測定試料
10. 取上No.566(試料No.10)
11. 取上No.986(試料No.11)

文中写真13 放射性炭素年代測定試料(2)

9b

18. 取上No.1218(試料No.18) a:炭化材の外観, b:測定試料

19. 取上No.1251(試料No.19) a:炭化材の外観, b:測定試料

文中写真14 放射性炭素年代測定試料(3)

- 1. 須恵器上面観(取上No.240・465)
- 2. 須恵器側面観(取上No.240・465)
- 3. 須恵器内の黒色物質遺存状況と試料採取位置(赤丸部分)
- 4. 採取した黒色物質の状況

第2節 鉄関連遺物分析資料の考古学的観察

表63 分析資料番号1

	遺跡名	殿河内ウルミ谷遺跡	遺物No.			4			項目	滓	メタル
出土状況	出土位置 C	区 SS8(掘立柱建物) 貼床(下)d-2層	時期:柑	灵拠	7世紀後	後半:出土土暑	пуп		マクロ		
試料記号	 検 鏡:TUR-1 化 学:— 放射化:— 	長 径:— cm 計 題 径:— cm 測	色 調	表:— 地:—		遺 存 度 破 面 数	_	分析	検 鏡 硬 度 E P M A X線回折 化 学 耐 火	0	
遺物種類	粒状滓(一括)	值 重量:一g	磁着度		_	前 含 浸	_		カロリー 放射化		
(名称)			メタル度		なし	断面樹脂	—		X線透過		
観察所見	(観察所見) メタル度 なし 断面倚面 一 X線透過 (3) し 断面倚面 一 X線透過 (3) し 断面倚面 一 X線透過 (4) したり、単流動状になった状態と推定される。 (5) したり、半流動状になった状態と推定される。										る。銀枚石 11金とし全れ 11日本 11日本 11日本 11日本 11日本 11日本 11日本 11日
分析部分	必要量を選択し、「	粒状滓」として分析に用い	る。残材返去	þ°							
備考	考 SS 8 掘立柱建物跡出土品から構成された鉄関連遺物には鉄製品2点と鍛冶羽口の先端部小破片に加えて、金床石がある。鉄製品は構成 No.3 とした長頸鏃の茎部に似た棒状不明品と、構成No.4 とした木部付きの手鎌(ヒル鎌)である。構成No.6-3とした羽口先の破片は外周部 径の小さな管状土錘端部様の形態を持つ。構成No.7 とした金床石は鍛冶炉遺構の貧弱さに比べて51.5kgもの重量を持つ巨大な資料であり、これらが鍛冶関連のセットと考えられる。SS 8 を検出した同一斜面にはSS 5 ~SS19までの少なくとも9基程度の7世紀代の段状遺構を 掘立柱建物跡が検出されているが、遺構としての残りはやや不良といえる。分析資料No.3 とした含鉄の滓はSS17とした弥生時代後期の 段状遺構を検出中に覆土から出土している。										は構成 は外周的、 で し た 後 期の

表64 分析資料番号2

	遺跡名	殿河内ウルミ谷遺跡	遺物No.		6-1		項目	滓	メタル			
出土状況	出土位置 (C区 SS8(掘立柱建物) 貼床(下)d-3層	時期:根拠	7世紀	後半:出土土器		マクロ	0				
計約討금	検 鏡:TUR-2	長 径:— cm	在 調	表:—	遺存度一	分	検 鏡 硬 度 EPMA					
武平17日 ク	放射化:一	計 短径:cm 測 原さ:cm	Piq 1	地: —	破 面 数 一	析	X線回折 化 学 耐 火 度					
遺物種類	(一括)	値 重量:一g	磁着度	—	前含浸一		カロリー 放射化					
(名称)	MAXESSI/1 (JE/		メタル度	なし	断面樹脂 —		X線透過					
観察所見	【観察所見】 大山火山の北麓を北東方向に伸びる狭い開析谷の東南東向きの急傾斜中段から検出された7世紀後半代の鍛冶工房出土の鍛造剝片である。 銀察所見 大山火山の北麓を北東方向に伸びる狭い開析谷の東南東向きの急傾斜中段から検出された7世紀後半代の鍛冶工房出土の鍛造剝片である。 鍛冶工房はテラスに設けられた梁行2間×桁行2間の掘立柱建物で、床面の中央やや南西寄りに鍛冶炉が構築されている。床面は新旧2 枚に分かれており、鍛冶炉が検出されたのは貼床下の旧床面に相当する。また、南東隅の柱穴に接する位置で構成№7とした大型の金床石が検出されている。 銀谷炉前辺の床面2m×2mの範囲に土砂採取用の25cmメッシュを設定して調査を行っている。分析資料№1とした資料は全般に厚みの薄い資料が主体で、最大の剝片は大きさが3mm大を測る薄板状である。厚みは0.2mmから0.1mm程度を測る。 褐色から片面のみが青光りする状態で、後者ほど薄い傾向を傾向を持つ。この鍛造剝片を分離した土砂中には1cm大前後の粘土質溶解物や「粒状の滓」が一定量含まれている。これらは羽口先や炉壁土が発泡したり、半流動状になった状態と推定される。											
分析部分	必要量を選択し、銷	段造剝片として分析に用いる。	。残材返却。									
備考	SS8 掘立柱建物跡 成No.3 とした長頸鎖 周部径の小さな管対 あり、これらが鍛冶 遺構や掘立柱建物路 後期の段状遺構を材	出土品から構成された鉄関連 集の茎部に似た棒状不明品と 大土錘端部様の形態を持つ。 材 台関連のセットと考えられる 弥が検出されているが、遺構 検出中に覆土から出土してい。	望物には鉄製品、 構成Na4とした 構成Na7とした金。SS8を検出した としての残りは* る。	2点と鍛冶羽口の分 :木部付きの手鎌 :床石は鍛冶炉遺構 :同一斜面にはSS ! ?や不良といえる。	た端部の小破片に加えて (ヒル鎌) である。構成 の貧弱さに比べて51.5k 5 ~SS19までの少なくと 分析資料№3とした含	「No.6- gもら (gもらの)	金床石がある。 3とした羽口 の重量を持つ 9基程度の7− 9 速はSS17と	。 鉄の な な 代 代 引	設品は構 な片は外 に なの 段状 代			

表65 分析資料番号3

山工作知	遺跡名	殿河内ウルミ谷遺跡	遺物N	0.		15					項	目	滓	メタル
山上扒儿	出土位置	C区 遺構外	時期:札	灵拠	7世紀後	後半 :	出土	:土暑	пУл		マク	. []		0
황체학습	検 鏡:TUR-3	長 径:6.4 cm	在 錮	表:茶 ~!	褐色~濃茶褐色 黒褐色	遺	存	度	破片	分	検 硬 EPI	鏡 度 M A	0	0
<u>መላ</u> ግ ከባ ረ	放射化:—	計 短 径:4.3 cm 測 <i>库</i> 厚 さ:2.5 cm	Cm 色 調 地:濃茶落		茶褐色~黒褐色	破	破面数		4	析	X線 化 耐 火	回折 学 度	0	
遺物種類	椀形鍛冶滓?(含鉄)	□ 重 量:110 g	磁着度 5				含	浸	_		カロ 放 身	リー t 化		
(名称)			メタル度 L(●) 断				面 樹	脂	0		X線;	透過		0
観察所見	平面形が不整五角形 は長さ2.5cm大程度の 面を成す自然面で、 重視すれば、小型の 濃茶褐色から黒褐色 不明瞭で、像的には	ジをした含鉄の椀形鍛冶滓様資 の木炭痕が残されている。側 微細な凹凸のある圧痕状をう D椀形鍛冶滓の可能性が強そう 色を示す。透過X線像によれに は含鉄部が椀型鍛冶滓的ではな	資料。全体的 引部は四方が 示す。表面に うである。色 ず、滓内部に ない。	りに放射 破面で、 には薄皮 に 調は表 し し 制	割れが発達して 右側部のみが検 状の酸化土砂が近 面の酸化土砂が3 割れが伸びており	黒竜巡をり、	もにで周	しているい マンクロション してい マングレイ しょう ひょう しょう しょうしょう しょう	いる。上面 ら自然面に 広範囲の含 部は濃茶裙 で密度が出	百な会会に	皮状で、 っている 心になっている から黒くな	右下 。 下 い	手面る地いる。	肩 に に (側 () () () () () () () () ()
分析部分	分 長軸端部1/3を直線状に切断し、メタル部を中心に分析に用いる。残材断面に樹脂塗付。残材返却。													
備考	出土位置は急斜面に構築されたSS17段状遺構検出時の覆土中である。直上の斜面には分析資料№1、2 7世紀後半と推定される鍛冶炉を持つSS8 掘立柱建物跡(貼床下)が検出されており、この遺構から廃 考えられる。									粒 わ た	代滓や錐 _滓の□	设造制) 「能性:	片が出 が強∨	土したいものと

表66 分析資料番号4

	遺跡名	殿	河内ウルミ谷遺跡	遺物N	0.				項	目	滓	胎土			
出土状况	出土位置	AZ I	NR1-1-c(自然河川跡)	時期:札	灵拠	10~12世紀:カ	友射性	生炭素	素年作	弋測定法		マク	, []		
황체학습	検 鏡:TUR-	-4	長 径:5.5 cm	舟 調	表:明 灰	褐色~赤褐色~ 白色	遺	存	度	破片	分	検 硬 EPI	鏡 度 M A	O	
₩/¥TnL ク	放射化:	·4 計 測	短 径:5.3 cm 厚 さ:4.1 cm	E m	地:茶	褐色~灰黒色~ 褐色	破	面	数	5	析	X線 化 耐 ル	回折 学 、度		0
遺物種類	板屋型羽口(銀	1個 23 23 24 24 1 1 1 1 1 1 1 1 1 1 1 1 1	重 量:192 g	磁着度		1	前含浸一		—		カロ 放 身	リー ナ 化			
(名称)	達付き			メタル度		なし	断	面樹	脂			X線	透過		
観察所見	 顎部に滓層の- れ落ちている。 滓部との境をな 濃ぶのある粘= には1cm大以 激しく、滓側に 	ー部が残し お口です お口で、 上質の木炭の すす で、 よ が の 面の で し 新 の で の し の で し の で し の で し の で し の で し で し で し で し で の し で 、 し で の で 、 し で の で 、 し で の で 、 し で の で 、 し で の で 、 し で の で 、 し 新 つ で 、 し で 、 し の で 、 し の で 、 し の で 、 し の で 、 し か の で 、 し か の で 、 し か の で 、 し か の で 、 し か で 、 し の で 、 し の で 、 し か の で 、 し か の で 、 し の で 、 し か の の で 、 し か の で 、 し か の の の の の の の の の の の の の	る板屋型羽口の先端部破け よ下面のごく一部が生き スマキ痕と推定される浅し と較的緻密。滓部側は羽 夏や気孔が点在するが、着 酸化土砂が茶褐色で、滓音	片。羽口正面 ているのみて い凹凸部分か □前面となる 密度は高く々 部は灰黒色か	「か連確右のやら 「「」「「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」」 「」	て顎部のやや左谷 な小破面に覆われ れる。スマキ痕の みが垂れになる 気味。色調は羽日 色になっている。	寄れて幅1 りて:10 目 りて:10 に い に に に に に に に に に の の の の の の の の の	波おま面上で、明	で、通6r 、通6r 残褐	右下の部分 風孔部の 配程度を 復 部や 予 色 から赤 著	♪ 産 面る 面る して る して る して る	は 厚 落 六 に 社 に い い い い い い い い い い い い い	B cm以 する。 する か か っ た に に に	上の 戸 り 口 ス こ ス こ 、 る と し 、 、 、 、 、 、 、 、 、 、 、 、 、	層が年は、中量破し、中量破し、中量破し、中量破し、中量
分析部分	短軸端部1/2	を直線状	に切断し、板屋型羽口付	着の滓部を	中心に分	予析に用いる。残	材返	却。							
備考	考 A地区とされた北西に傾斜する開析谷の基部を北東方向に流れ下る自然河川跡出土資料から構成された42点中の一点である。自然河川路 はNR1-1からNR1-3に3区分される新旧の河道から構成されている。構成Na17~133まで114点の資料が相当する。遺物の種類としては対 面に明瞭なスマキ痕を残す板屋型羽口と形態が特徴的な板屋型の椀形鍛冶滓が目立っている。また、これらに伴う資料として流出孔滓ペ 流出溝滓に加えて、少量ながらも炉壁片や再結合滓、さらにはごく少量の工具付着滓や鉄製品破片が含まれている。但し、全体的な様料 は板屋型羽口と板屋型椀型鍛冶滓が主体で、直近の上流部に板屋型の精錬鍛冶遺構が想定できよう。											河川跡 ては外 引注 祥 村 日 本 様 相			

表67 分析資料番号5

电十步波	遺 跡 名	殿	河内ウルミ谷遺跡	遺物N	o.		32				項	目	滓	メタル
山上1八7九	出土位置	AZ 1	NR1-1-d(自然河川跡)	時期:村	艮拠	10~12世紀:カ	友射性	 炭素年	代測定法		マク	D		
국체학습	検 鏡:TUR-	5	長 径:21.7 cm	在 調	表:茶	褐色~灰褐色	遺	存 度	ほぽ完形	分	検 硬 EPN	鏡 度 M A	000	
武平市 ク	加 子·10K- 放射化:—	·o 計 測	短 径:23.7 cm 厚 さ:9.7 cm		地:濃	茶褐色~灰黒色	破	面 数	3	析	X線 化 耐火	回折 学 、度	0	
遺物種類	板屋型椀形鍛	冶滓	重 量:3,704g	磁着度		2	前	含 浸	-		カロ 放 射	リー け 化		
(名称)	(特大・流出孔滓付き) メタル度 なし 断面樹脂 —										X線;	秀過		
観察所見	下も便りた。 手側のの制設し 手側面を下体の制 た先手側のたち手 が 手術の た た 手側の た 本 りの 材 た た 手 側の が 下 も で は の で 下 も の の で 下 も の の で 下 の で 下 体 切 を 下 体 の で に 下 体 の の で 本 の で 、 の の し の た 体 の の と の に の の し の た の し の の と の し の た の し の た の し の た の と の ち の ろ の と の と の の と の と の ろ の ろ の と の ち の ろ の と の と の ろ の ろ の ろ の と の と の ち の ろ の と う の と の ろ の ろ の と の ろ の と う の と の ろ ろ の と ろ の ろ の ろ の ろ の ろ の ろ の の ろ の ろ	こ棒れる方(2) 本様れる方(2) たまりの(1) たました) たました (1) (1) (1) (1) (1) (1) (1) (1)	売出孔滓が突出した、3. 全体形状は本来の形状 すく広がる形で滓が形成 気味で、それぞれの窪み 坡面の径は2.5cm大前後ぎ 出孔滓内部が抜け出たこ 色調は表面に残る酸化. こなる。	7kg大の板屋 を保っている されている。 の表面に不あ と 測る。この とによる陥 さ 土 砂の部分か	型施主体 そのなた 見則分かう色 と茶	殺冶滓。右上手∉ 設となるのは右上≡ め、上面が3方= め、し面が3方5 め、して、 が5 切らかに滓が5 疑いも残る。右 。滓部は表面の∬	●手分る側手分る側手分る側手分る側手 のある。	 割部からち かれてを 決 読 に 流 り が 床 が 床 い <li< td=""><td>下面の表のの中 しがれのの たぞれの下手 でいからで、 が る た で 、 列 の や の や の の の の の の の の の の の の の の の</td><td>がな 間の がに り に に り</td><td>なく 親 一家 が た 出 の 低 い ま の し の し の し の の 低 い の の の の の の の の の の の の の の の の</td><td>をしてで ない より ない ない ない ない ない ない ない ない ない ない</td><td>直、をがな熱は 上肩な破おし表</td><td>)肩が但な面床上、った土いで</td></li<>	下面の表のの中 しがれのの たぞれの下手 でいからで、 が る た で 、 列 の や の や の の の の の の の の の の の の の の の	がな 間の がに り に に り	なく 親 一家 が た 出 の 低 い ま の し の し の し の の 低 い の の の の の の の の の の の の の の の の	をしてで ない より ない ない ない ない ない ない ない ない ない ない	直、をがな熱は 上肩な破おし表)肩が但な面床上、った土いで
分析部分	長軸端部1/10	を直線状	に切断し、滓部を分析に	こ用いる。残	材返却。									
備考	NR1-1自然河川 屋型羽口が9ょ っている。	跡出土の 気、板屋雪	D板屋型椀形鍛冶滓であ 型椀形鍛冶滓を含む大型	る。構成Nol' の滓が9点、	7~59ま 流出孔	での42点が同一過 滓や流出溝滓が行	貴構の 合わせ	り出土品 せて17点	として構成 、再結合著	えされ 客が 2	れている 2 点とv	ゝ。炉 ゝう組	壁が5 み合れ	」点、板 oせにな

表68 分析資料番号6

THE JEAN	遺跡名 殿河内ウルミ谷道						亦	遺物N	0.	53						項	目	滓	メタル
西土扒沉	出	土 位 置	AZ	N	JR1-	-1-d(自然河	川跡)	時期:柞	艮拠	10~12世紀:カ	放射性	生炭素	素年有	弋測定法		マジ	7 17		
試料記号	検化	鏡:TUR 学:TUR	-6 -6	카	長	径:15.5 c	cm	色調	表:茶 黒	褐色~灰黒色~ 褐色	遺	存	度	破片	分	検 硬 EP	鏡 度 M A	0	
	放射化:一			副測値	短 厚	径:9.9 c さ:7.2 c	em em		地:灰	黑色~黒褐色	破	皮 面 数		1	析	X線 化 耐 ッ	回 折 学 て 度	0	
遺物種類	流出孔~溝滓 (鍛冶系)				重	量:1,352	g	磁着度		2	前	含	浸	—		カロ 放 身	リー † 化		
(名称)		(鍜冶糸)						メタル度		なし	断	面横	指	_		X線	透過		
観察所見	左ら向の天	則部がシャ も右側部で かって迫り 発達した緻 井部側圧痕	ープなす 上がな 深い	破る形層を	iにな 平 作 作 で 。	なった、幅9 面形は僅かに の舳先状を示 上面表皮直下 色調は表面	cm強の 弧状で ま 。 中 小 の 3 分 0	流出孔からシ 、側部からル た、側部表面 た表層の気引 り1 程度が士	記出溝滓 低面は短 面には炉 しが目立 こ砂主体・	破片。上面から 軸方向の傾斜角 壁粉らしき灰色 っている。なお の茶褐色になっ ⁻	右度の、たい	部は が 点 上 手 泽	生 - 々 即 - 々 同 は	ており、 舟底状とな 固着する。 上面にも 日 上 面 ・ 地	たる。 で	な験状 石側 面から 大の部 灰黒色	の流れ 部では えるが ら い ら	皺を生 先端音 り、 え 褐色	こじながありますありますあります
分析部分	長韓	軸端部 1 / 1()を直殺	泉状(に切	断し、滓部な	を分析に	用いる。残	材返却。										
備考	分	分析資料Na.4~7までの4点の資料がNR1-1自然河川跡からの出土品を母体とした分析資料セットでさ										トである。							

表69 分析資料番号7

비고 화하고	遺 跡 名	殿河内ウルミ谷遺跡	遺物N	0.		59			項	目	滓	メタル	
西土扒沉	出 土 位 置 A区	NR1-1-c(自然河川跡)	時期:札	艮拠	10~12世紀:カ	友射性	主炭素年	代測定法		マク			
試料記号	検 鏡:TUR-7 化 学:一	長 径:24.3 cm 計	色調	表:黄	褐色~濃茶褐色	遺	存 度	破片	分	検 硬 EPN	鏡 度 AIA	0	
	放射化:—	短径:14.4 cm 測 値 写さ:12.3 cm		地:濃茶褐色		破	面 数	2	析	X線 化 耐火	回折 学 [度		
遺物種類	再結合滓	重 量:1,130g	磁着度		4	前	含浸	-		カロ ¹ 版 財	ノー ・ 化		
(名称)	(含鉄)		メタル度		H (())	断ī	面樹 脂		1	X線i	透過		
観察所見	左側部と上手側の側 側部から下手側の側 の再結合滓で、鍛冶 に分布している。全 下ったものと考えら 磁着気味の部分があ 長軸端部1/10を直線	部が明瞭な破面になった、 部にかけては緩やかな椀形 系の鍛造剝片や粉状滓は見 体観が浅い椀形となってい れる。色調は上面の一部に り、周辺部には結晶の発達 試に切断1. 再結合達と1	厚さ6cm弱を	注面左い 加左い たい た む て 上 む で た い た 砂 で た い た い た で た い た で の た い た た の の た い た て い た で の の ろ の の の ろ の の の の の の の の の の の の	板状をした再結合 は表層が剝落し い。比較的粒径の の遺構で生成され 残り、全体的にし る。 [*] [*] * が、知。	合て破 て整 れ 表 可	皮片。」 面になった形の えにその 面・地と	面は極めて っている。 可結合滓で 他の鍛冶園 も濃茶褐色	て緩られ 1.5cm で、同 り し	やかな m 大 い 下 い に ば っ て い		平坦 中 や が ぼ 町 に	iで、右 炭 ば 均 流 れ て
備考	7 夜珊瑜部1710を直線へに切断し、再給音径として分析に用いる。残れ返却。 8 NR1-1自然河川跡の出土品から構成された42点中の1点である。構成された再結合滓は2点で、何れもが同じような板状の形態を持ち 浅い土坑状の遺構で再結合した可能性を窺わせる。なお、再結合滓はNR1-2自然河川跡からも出土しており、2点を構成している。両 構出土の再結合滓とも密度は低めで、ざっくりとした質感を持っている。こうした質感の再結合滓が水流に乗って河川中を長距離移動 たということは想定しにくく、本来の遺構が調査地点とほど遠くない可能性が強い。これは大型の椀形鍛冶滓が完形に近い状態で出土 ていることとも関連しそうな状況証拠といえる。											·持ち、 。 適 超 し [*] 出土し	

表70 分析資料番号8

山工作知	遺 跡 名	殿注	可内方	ウルミ谷遺跡	遺物N	0.	60						項	目	滓	胎土
百工1八九	出土位置	AX N	JR1-2	2-d(自然河川跡)	時期:村	灵拠	10~12世紀:カ	友射性	生炭素	素年作	弋測定法		マク	, 11		
試料記号	検 鏡:TUR- 化 学:—	-8 計	長	径:6.6 cm	色調	表:黒	褐色~赤褐色	遺	存	度	破片	分	検 硬 EP	鏡 度 MA	0	
	放射化:—		短厚	径:6.8 cm さ:1.7 cm		地:黒	地:黒褐色		面	数	5	析	X線 化 耐 ル	凹折ぐ度		
遺物種類	炉壁		重	量:75 g	磁着度		1	前	含	浸			カロ 放 身	リー す 化		
(名 称)	(製錬炉?、補			メタル度		なし	断	面樹	脂	_		X線:	透過			
観察所見																
分析部分	短軸端部1/3	を直線状	に切り	断し、補修痕の残る	炉壁として	分析に月	引いる。残材返却	۱ ₀								
備考	§ NR1-2自然河川跡から出土した構成資料62点中の1点である。分析資料にはこの内6点を選択しており、本資料に加えて炉底塊または根 屋型椀形鍛冶滓3点、板屋型羽口1点、さらには含鉄の椀形鍛冶滓と推定される小破片1点という組み合わせである。構成資料の全体出 率は炉壁が6点と僅かで、胎土等の違いにより一応は製錬系と鍛冶系に区分している。製錬系とした5点の炉壁は何れも小破片で、外居 部が擦れて磨減したような特徴を持っている。数多くの板屋型羽口や鍛冶系とした炉壁に比べれば、硬質であるにもかかわらず磨減の程 度が進んでいる。従って、製錬系とした炉壁類については点数も少なく、表面の磨減が進んでいることから板屋型の羽口や滓に比べて、 より遠方に本来の炉遺構が想定される可能性が強い。なお、炉壁の補修痕は同一事業用地内で調査された赤坂小丸山遺跡からも出土して おり、地域性と時期的な関連が注目される。										たは板 い全、外の に、 減べ して					

表71 分析資料番号9

de Edham	遺跡名	殿	と河内ウルミ谷遺跡	遺物N	0.		67			項	目	滓	メタル
出土状况	出土位置	AX 1	NR1-2-d(自然河川跡)	時期:杜	艮拠	10~12世紀:カ	坎 射性炭素年	代測定法		マク	, П		
試料記号	検 鏡:TUR- 化 学:TUR-	·9 ·9	長 径:34.3 cm	色調	表:茶 黒	褐色~灰黒色~ 褐色	遺存度	破片	分	検 硬 EP	鏡 度 MA	0	
	放射化:—	11 11 11 11 11 11 11 11 11 11 11 11 11	^T 短径:25.6 cm リ 厚さ:17.7 cm		地:灰	黒色~黒褐色	破面数	6	析	X線 化 耐 ノ	回 打 学 く 度	0	
遺物種類	板屋型椀形鍛冶) 注注:	≞ 重 呈:14,540 g	磁着度		1	前含浸	-		カロ 放身	リー † 化		
(名称)	(特大、炉底垹	起 ?)		メタル度		なし	断面樹脂	- 1		X線	透過		
観察所見	下手側の側部合。 左右2ヶ所6 で板屋型椀形4 下手側が大きく 砂にている。滓 る。 色調は酸イ 長軸端部 1/15	全上かった。 全上か治済、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので	破面になっており、左右、 中央部に向かい窪み気味、 、一見すると工具痕様で 部の立ち上がりに似る点。 て流出孔滓等の存否が不 の点も判別を難しくして、 に露出する下半部が結晶。 覆われた部分が黄褐色か たに切断し、達部を分析に	のではられた のではからのたました ある板をめました のの名 茶 る で よる 板 た め に ち が 屋 地 り い る 。 達 る 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め 板 た め た ま む に む が 屋 加 り い る 。 達 る 板 板 か ら の 。 達 ね 色 の 、 う 音 色 の 。 注 れ ち の 、 の 。 こ 本 着 色 た か た ま た が た ま た た か こ た ま た の 。 こ 着 色 の の 。 達 も し た で 。 第 、 る 本 ろ 、 、 本 も し た で 。 第 、 る 本 、 ろ 、 、 の も こ た の 。 、 ま も し た で 。 そ 。 、 、 の の ら 、 、 、 の の ら 、 、 ろ の の ら 、 、 の の ら 、 、 の の ら 、 、 の ろ る 、 の の ら 、 こ の の 、 こ る 、 の ろ の 、 こ る 、 の 、 の の の こ ろ の 、 の 、 の ろ の 、 の ろ の ろ の ろ の ろ の ろ の ろ の ろ ろ ろ ろ の ろ ろ の ろ ろ ろ ろ ろ の ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ ろ	すい すい すい すい ない 部内 形の おか 部内 彩 か 部内 彩 縦 単 の で い 密 溶 に い 密 溶 に い 密 溶 に い 密 溶 に い 密 溶 に い 密 溶 に い 密 深 深 ば い い 密 溶 に い 密 深 深 ば が の い 密 深 深 ば い の な 部 に い 密 深 深 に い 密 深 深 に い 密 深 深 に い 密 深 深 に い っ な 部 に い っ な 部 に い っ な 部 い っ な 部 い っ な 部 い っ な 部 い っ の な い っ い っ の つ い っ つ な 部 い っ の つ い っ い っ の つ い っ で い っ で い っ の つ い っ い っ で い っ の つ い っ い っ の つ い っ つ い っ つ い っ い っ の つ い っ っ い っ い っ っ い っ い っ い っ い っ い っ い っ い っ い っ い っ っ っ い っ い っ い っ い っ い っ い っ い っ い っ っ い っ っ っ い っ っ い っ い っ っ い っ っ っ い っ っ っ い っ っ っ っ っ い っ っ っ っ っ っ い っ っ っ い っ っ っ っ っ っ っ っ っ っ っ っ っ	認される板屋型料 下面が立ち上がけ 抜けによる陥落が かとしており、 い資 かから下面はや原料 都で、上面や原料 表面・地とも灰料	施形鍛冶滓(0)の急な深い 良かもしれた しのの急な深い したもしたち ののもしたち ののもしたち ののもしたち のののののたち ののののののののののののです。 したいのののです。 したいのののです。 したいのののです。 したいのののです。 したいのののののです。 したいのののです。 したいのののです。 したいのののです。 したいのののです。 したいのののです。 したいのののです。 したいののです。 したいののです。 したいのののです。 したいのののです。 したいののです。 したいののです。 したいのののです。 したいののです。 したいののです。 したいのです。 したいのです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいののです。 したいのです。 したいのです。 したいのです。 したいのでする。 したいのです。 したいのです。 したいのでする。 したいのでする。 したいのでする。 したいのです。 したいのでする。 したいのです。 したいのです。 したいのです。 したいのでする。 したいのでする。 したいのでする。 したいので	D破片様。 の 成 形 に な そ 4 に か の た 手 修 に い 。 上 手 修 い 。 上 手 作 い 。 上 手 作 い 。 上 手 作 い 。 上 手 作 い 。 上 手 作 い 。 上 手 作 い 。 上 手 作 い 。 上 手 作 い い 。 上 手 作 い い 。 上 手 作 い い に い の 。 上 手 作 の で い 。 の 。 た 手 作 の で 、 い 。 の ら い ら の で い の の の の ら の ろ の の ろ の ろ の ら の ら の ら の ら の ろ の の の の ろ の の ら の の つ ら の ろ の ら の ら の ら の ら の ら の ろ の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ら の ろ ろ の ら ら の ら ら ら ろ ら ら ら ら ら ら ら ら ら ら ら ら ら	皮っ則底楽分はていの塊合い	であり、 い 部 い い 部 い て ふ に 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	な上平は沙色化が面面説体炉や	も14.1 中部の い の た 日 い の た 日 い	5kg以上は決 空直ない。 か酸化し し が 張りてい
備考	NR1-2自然河川 した重さ25kgを 製錬系の資料は	跡出土の と量る完刑 は炉壁と排	の構成資料62点中の1つ 形に近い滓は本遺跡出土で 推定される10点程度のみ	である。出 の最大重量と となる可能性	ご資料の : 外観を 挂がある	主体は板屋型羽口 示す資料である。 。	コや板屋型植 もし、本述	値形鍛冶滓オ そ料が精錬۶	いられ 系の金	なる。⊼ 骰冶滓~	本資料 であっ	と構成 た場合	₹No.68と ↑には、

表72 分析資料番号10

	遺跡名	殿	河内	ウルミ谷遺	跡	遺物N	0.		78	3				項	日	滓	胎土
出土状况	出土位置	AХ	NR1	-2-d(自然沪	「川跡)	時期:杜	艮拠	10~12世紀:方	友射性	生炭素	素年亻	弋測定法		マク			
計約訂보	検 鏡:TUR-	-10	長	径:6.9	cm	在 ==	表:黒	色~黒褐色~ 黒色	遺	存	度	破片	分	検 硬 EP!	鏡 度 M A	0	
武小十日L ク	放射化:一	-10 前 測	」 短 「 厚	径:11.2 さ:5.0	cm cm		地:明 黒	白色~赤褐色~ 褐色	破	面	数	6	析	X線 化 耐火	回折 学 、 <u>度</u>		0
遺物種類	板屋型羽口(銅 先端~体部	段冶)	· 重	量:318	g	磁着度		1	前	含	浸	—		カロ 放 身	リー ナ 化		
(名 你)	スマキ造り)				メタル度		なし	断	面樹	丨脂	_		X線i	透過		
観察所見	左側部中段に 下面と体部側が 1 cm程の幅です 度の幅を持っ ⁻ 右肩部には法 明白色で、芯着	2 単位が が が た お し て お し た が に が に が に お り に う 総 細 出 り で の に わ り で の に か り た ろ の に ろ の に ろ の に ろ の う の う の う の う の う の う の う の う の う ろ の う の う	連なっ縦か肩ん	したような り ている。通 形で遺存す 面形で見る て、顎部側 にかけての か 赤褐色部分	ドの通風 風の の 乱。 右風の し に 向か の ま の が の 側 た こ の の の の の の の の の の の の の の の の の の	孔部壁面を死 径は上下方 部から顎部に 部が上下方向 て盛り上がる 色から黒褐色 問部に至る。	す 板 屋 句 で 4.3 の こ か け て て し に 広 が 土 体 し で 、 、	型羽口の先端部7 cmを測る。羽口 はスマキ痕が連続 る傾向と同様、 はスサをまばらし 部外面は灰黒色	波端的(体に気味)	。邪に側じと	コ色さ部部でつ	面から見て ガラス質に れる。なま がやや平坦 度が高い。 いる。体音	右指示明たの	全日の通知の	皮風厚って微してい、	、左側 部先が 4.7~5 ると 見 孔 部	部の上 内側に 5.2cm程 口先の ご割いが
分析部分	短軸端部1/4	を直線状	に切	断し、スマ	キ造りの)板屋型羽口	付着のフ	ガラス質滓部を中	心に	分析	に用	いる。残	材返	却。			
備考	通風孔部の壁 うに粘土塊をき 作過程で変形 口のみが本遺	面が上下 巻き付け; した等の 跡では唯	2単f た上- 理由、 、	立の連接し7 でスマキに。 で、二次的1 通風孔部の5	に様な断 より締め こ再穿孔 完存する	面形になって る形で羽口⊄ されている℡ 羽口先破片で	こいるの)製作さも ごある。	は本遺跡唯一の 〕 れているとすれ あろう。なお、[形態 ば、 [!] NR1-	を示 特異 -2自	す羽形河	口である。 態である。 川跡出土資	後に むし 予料の	こ通風孔 しろ、≦ D内、村	乚部と 当初の 構成№	なる芯 通風孔 79の板	藤の周 部が製 屋型羽

表73 分析資料番号11

비니다. 사람하다	遺 跡 名	殿	可内ウルミ谷遺跡	遺物N	o.		85				項	目	滓	メタル
出土状况	出土位置	AX 1	NR1-2-d(自然河川跡)	時期:杜	艮拠	10~12世紀:カ	友射性	主炭素	F代測定法		マク			
황체학습	検 鏡:TUR-	-11	長 径:18.5 cm	在 調	表:黄	褐色~茶褐色~ 褐色	遺	存质	ま ほぼ完形	分	検 硬 EPN	鏡 度 [A	0 0	
нчүтпс 7	放射化:	11 計 測	短 径:12.8 cm 厚 さ:4.9 cm		地:灰	褐色~黒褐色	破	面	女 1	析	X線回 化 耐火]折 学 度	0	
遺物種類	椀形鍛冶滓	· 他 ?	重 量:1,158g	磁着度		2	前	含~	₹ —		カロ! 放射)- 化		
(名 称)	(特大)			メタル度		なし	断ī	面樹周	É —		X線透	昏過		
観察所見	所見 平面形が左右に長手の不整楕円形で、1.1kg強の重量を量る椀形鍛冶滓。左端の肩部が小範囲で欠けている以外はほぼ完形である。上面 は左右方向に向かってうねる流動状の面で、側部から下面は左右方向に長手のやや浅い椀形になっている。後者の表面には薄皮状の炉床 土の痕跡と粉炭痕の広がりが認められる。上面を中心に小礫混じりの酸化土砂がやや厚い。色調は酸化土砂の部分が黄褐色から茶褐色で、 滓部は表面・地とも灰褐色から黒褐色になっている。													
分析部分	部分 長軸部1/10を直線状に切断し、滓部を分析用に用いる。残材返却。													
備考	考 古代の鍛冶遺跡で出土するような1kg強程度の重量を持つ椀形鍛冶滓である。15kg以上を測る極端に大きな板屋型椀形鍛冶滓に比べれば 10分の1から20分の1の重量になる。自然河川跡出土資料のため本来の鍛冶遺構は不明ながら、滓量の違いを重視すれば鍛冶工程ないし は母体となる原料鉄の伴う滓量の違いを反映している可能性が強い。但し、本遺跡出土の椀形鍛冶滓中では例外的な大きさを持つ椀形鍛 冶滓である。あるいは重量の低い個体が水流により下流に流されて大型品が川床に残留しやすかったということも疑われるため、出土量 が本来の工程差の比率を素直に反映しているは言い切れないかもしれない。													

表74 分析資料番号12

the Labora	遺 跡 名	殿	河内ウルミ谷遺跡	遺物No. 93					項	目	滓	メタル		
出土状况	出土位置	AK 1	NR1-2-a(自然河川跡)	時期:村	艮拠	10~12世紀:カ	友射性	主炭素的	F代測定法		マ !	7 17		
試料記号	検 鏡:TUR- 化 学:TUR-	-12 -12 ===	長 径:17.6 cm 短 径:15.7 cm	色調	表:黄	褐色~茶褐色~ 褐色	遺	存居	度 破片	分	検 硬 EP X線	鏡 度 MA 回折	0	
	放射化:一	測	厚 さ:5.8 cm		地 · 余	陶巴~黑陶巴	100	囲 ⅔	4	析	耐り	子と皮		
遺物種類	板屋型椀形鍛 (砦大, 工具病	一 値 冶滓	重 量:4,401g	磁着度		1	前	含え			カロ 放 身	リー † 化		
(名称)	(内久(主八が) 滓付き)	cold x		メタル度		なし	断ī	面樹月	<u>i</u> —		X線	透過		
観察所見	平面形が長手の も小破面あり。 深い窪みが残、 左右の側部かり には縦方向に 滓は逆に右下 度が高く、よ 鍛冶滓と判断;	の不整 本 本 た に て 手 の れ て 手 の よ れ て 手 の よ の の れ て 手 の し の の の の し れ て 手 の し の の の の の し れ て 手 の し の の の の の の の の の の の の の	円形をした、4 kg大の重 左右方向の肩部が小高く、 30、運みは斜め左上方向 の側部にかけては立ち上; 損良と工具痕流入滓の両 下面を経て上手側上方に 芯部では木炭痕や気孔の 色調は表面を覆う礫混じ	量を持つ板屋 、中央部側の からの急な浴 方が確認され 向かっつ滓部と 目立の酸化土産 りの酸化土産	型不以いる で 型不以いる いる で な が ま が こ か	鍛冶字の半欠品。 認定なり、ためり、 ないる。 で、 表したのり、 たなり、 たる で、 、 たまに し部のの らる で、 、 ななり、 たい の たる なが しの の で、 たなり、 たる ながり、 ななり、 ない の の の の の の の の の の の の の	左た一土し面も滓	下左が剝まら 部の込か 割 部 は 表	の 側部が た	きの工てのかの茶	- 破面 度 る 状 面 た の り ; う や た さ 色 か ら ら い い い い い い い い い い い い い	上、を右でて、色	手径持上、の板を切りてて低具表型す	□肩以いの側表展 「「「」」 「」 「」 「」 「」 「」 「」 「」 「」
分析部分 備 考	長軸端部1/15 左下手側の側部 資料Na8から しており、構成	を直線状 ^第 が破面り 分析資料N 成遺物では	に切断し、滓部を分析に こなっており流出孔滓の ね13までの6点が同一遺 は54%を占めている。	ニ用いる。残 有無は不明て 構からの分材	材返却。 ごある。 行資料で	NR1-2自然河川間 ある。NR1-2自然	跡出⊐ 然河ノ	上資料: 跡か	から構成さ らは本遺跡	れた(で最	52点中の も多量の	の1点 の鉄関	である 連遺牧	っ。分析 かが出土

表75 分析資料番号13

	遺跡名	殿	河内ウルミ谷遺跡	<u>游 遺物No. 99</u>							項	目	滓	メタル
出土状况	出土位置	AX 1	NR1-2-d(自然河川跡)	時期:村	艮拠	10~12世紀:カ	友射性	炭素年(代測定法		マク	л П		
그 만드 [아내는	検 鏡:TUR-1	13	長 径:9.5 cm	A	表:茶~	褐色~濃茶褐色 黒褐色	遺	存 度	破片	分	検 硬 EPI	鏡 度 M A	0	0
試科記方	加学:TUR-Ⅰ 放射化:—	13 計 測	短 径:7.8 cm 厚 さ:4.1 cm	色 調	地:濃	茶褐色~黒褐色	破	面 数	9	析	X線 化 耐 ノ	回折 学 く 度	0	
遺物種類	椀形鍛冶滓	値	重量:324 g	磁着度		5	前	含浸	_		カロ 放 身	リー す 化		
(名 称)	(大、含鉄)			メタル度		L (●)	断面	百樹 脂	0		X線:	透過		0
観察所見	 察所見 側部3面と上面左側が破面になった大型の椀形鍛冶滓破片。含鉄の滓で破面の結晶が発達する。上面右寄りの肩部は一段低い半流動状の 滓部となる。下面はごく浅い舟底状で、表面には炉壁粉が点々と固着する。破面に露出する滓の密度はやや低く、下半部の結晶の発達と 上半部の1.5cm大以下の大きさを持つ木炭の噛み込み部分が目立つ。含鉄部は下面右寄りの表皮直下か。色調は表面の酸化土砂が茶褐色 で、滓部は表面・地とも濃茶褐色から黒褐色になる。透過X線像によれば滓内部は中小の気孔が目立つスポンジ状で完全に纏まってはい ないが、下半の芯部にほんやりとした含鉄部が残されている。 析部分 長軸端部 1/3を直線状に切断し、メタル部を中心に分析に用いる。残材断面に樹脂塗付。残材返却。 													
分析部分	部分 長軸端部1/3を直線状に切断し、メタル部を中心に分析に用いる。残材断面に樹脂塗付。残材返却。													
備考	縦断面形から見 いかとしている 連遺物の内、含 区SS17段状遺構 て全体比率は低 下った資料であ	。ると流された。 が、や* ・ 鉄部がか。 うか。 これ これ これ	出溝滓破片のような形に や性格の不明瞭な資料で ペタル度L(●)と判断さ 出土品で、もう1点が本 いは本遺跡出土の鉄関連 いう理由による可能性が	なっている含 ある。NR1一 れる資料は値 、資料となる 遺物自体の性 強そうである	合鉄の滓 2自然2点 をか2点 のそれし た格が板	である。破面の新 川跡出土品から村 のみとごく少ない 以外の含鉄の滓資 屋型精錬鍛冶の二	結晶がさそれ これ これ これ これ これ に に し こ れ こ れ に に に い い れ に の い に い に い に い に い に い に い に い に い に い に い い い い い い い い い い い い い	発達す れた62 の2点 はメタリ :伴う廃	ることから 点中の1点 の内、分析 レ度H(〇) 棄物が主々	っ遣する 気で資料 行以で、	物名称る ある。 本No.3 る い 部 散 見 の の の の の の ろ の の る の っ ろ の の ろ の 。 ろ の の ろ の 。 ろ の の つ の の の の の の の の の の の の の の の の	を椀渉たしていた。	鍛冶土の 合の の て 助	ではな 留 つ 設 定 を 板 れ れ に 流 れ

表76 分析資料番号14

	遺 跡 名	殿	河内	ウルミ谷遺	跡	遺物I	Jo.		141					項	目	滓	胎土
出土状況	出土位置	C区	遺構	科(D8グリ 音褐色土	ッド)	時期:	根拠	古代(7世紀	後半	?):	出土:	土器		マク	· 🗆		
計約訂는	検 鏡:TUR-	-14	長	径:2.8	cm	A 調	表:黒	色~暗紫紅色~ 青色、灰白色	遺	存)	 史	破片	分	検 硬 EPI	鏡 度 M A	$\bigcirc \bigcirc \bigcirc$	
武平市 5	放射化:—	計 測	短厚	径:2.0 さ:3.45	cm cm	巴酮	地:黒	色~灰白色	破	面	敗	5	析	X線 化 耐 火	回折 学 、度		
遺物種類	羽口先端部 (ガラス質滓付	形 *き、	重	量:12	g	磁着度		1	前	含	灵	—		カロ 放 身	リー t 化		
(名称)	緑青付き)					メタル度		なし	断百	皕 樹丿	皆	_		X線)	透過		
観察所見	 所見本遺跡唯一の銅系と推定される羽口の先端部破片。径3cm大前後の小破片で、右上には灰白色から僅かに赤みを帯びた羽口胎土の破面が 露出し、左下の外面には黒色ガラス質の滓が広がっている。滓表面には垂れと木炭痕が混在し、部分的にくすんだ暗紫紅色の色調となっ ている。また、左上部の黒色ガラス質滓の破面には径2mm程の範囲に緑青色の部分が確認される。この緑青色と滓外面のガラス質滓の暗 紫紅色が銅系と判断される根拠である。羽口破片としては先端部または肩部小破片のために通風孔部が見当たらず、本来の形状は不明で ある。 部分 短軸端部1/2を直線状に切断し、銅系の羽口として分析に用いる。残材返却。 																
分析部分	短軸端部1/2	を直線状	に切	断し、銅系	の羽口と	して分析に	用いる。	残材返却。									
備考	殿河内ウルミ 141~156までの はいずれもが 期を判断する 中ではSS 8 掘 ながら鉄製品が 関性が疑われる	谷遺跡CD の16点が近 設造系の 新料には 対料には が は土し が よし、	くのE 気構製しい かい)8グリット 外出土資料。 品である。。 いものの、。 ら出土した る点が挙げ	、暗褐色 として構 こ区の遺 どちらか 構成Na 3 られる。	色土からの出 成されてい 構は弥生時 といえば古 ~7の鉄製 従って、SS	1土資料 る。構成 代と古代 代に属す 品や鍛 る 掘立 た	である。この暗 約142と143の2) が主で、遺物自 る可能性が強い、 台関連遺物が目立 主建物跡の貼床下	曷 点体とつか しょ しょ しょ しょ しょ しょ しょ しょ しょ しょ しょ しょ しょ	は古小明れら、秋田	代型のる考れの	遺物包含 極小の 料由 出 造 を 都 大 半 し 貴 が 大 半 し よ し た 鍛 冶 作 が 大 半 し き し 、 た 半 た し た し た 、 た 、 、 、 、 、 、 、 、 、 、 、 、 、	 	:捉えら 彩鍛る。 な に し た う 鍛 だ に う 鍛 だ に う 鍛 だ に う 鍛 だ に の に の に の の に の の の の に の の の の の の	っれて 幸破っ す なの 遺 SS14 ら 関連	おで、構か遺り、残資土もか	構成Na 私 約 の 料 の 料 の 料 の 約 の 料 の 料 の 約 の 制 の 制 の 内 の の の の の の の の の の の の の の

表77 分析資料番号15

	遺 跡 名	殿河内ウルミ谷遺跡	遺物No	Э.	142		項目	滓	メタル
出土状況	出土位置	遺構外(D8, D9グリッド) 暗褐色土	時期:根	見拠 古代(7世紀	後半?):出土土器		マクロ		
試料記号	検 鏡:TUR-15 化 学:TUR-15	長 径:3.9 cm 計 毎 径:2.5 cm	色調	表:黄褐色~黒褐色	遺 存 度 破片	分	検 鏡 硬 度 E P M A X線回折	0000	
	放射化:—	測 厚 さ:1.2 cm		地:濃茶褐色~黒褐色	破 面 数 2	析	化 耐火度	0	
遺物種類 (名 称)	椀形鍛冶滓 (小、含鉄)	重量:20 g	磁着度	3	前含浸一		カロリー 放射化		
(11 14)	(71, 194)		メタル度	銹化(△)	断面樹脂 —		X線透過		
観察所見	分析資料No14と同様 破片。上面は浅い皿 痕跡と剝離痕が広が 地は濃茶褐色から黒	、C区遺構外出土品である 状に窪んだ流動状で、比較 っている。破面の気孔は少 褐色を示す。透過X線像に	。左側部と下 的整った肩部 ないが、散在 よれば、滓内	手側の側部が破面になっ を経て緩やかな椀形をテ する。色調は薄皮状の配 部には中小の気孔が比	った小型、または極小と 示す側部となっている。 酸化土砂が茶褐色で、ま 咬的目立ち、ややスポン	: 推知 し () ジ 北	定される椀形 『表面には炉 り流動状の部 犬の滓質とな	鍛冶滓 床土の 分は黒 ってい	の肩部 微かな 褐色。 る。
分析部分	分 全量を使用し、滓部を分析に用いる。残材返却。								
備考	C区の遺構外出土品 は構成Na143とした 生時代の段状遺構と って、本資料は遺構 る。	で、D8からD9グリッド 極小の椀形鍛冶滓破片のみて 7世紀代と推定される掘立 外の包含層出土ながら、SS	に跨る暗褐色 で、他の13点 柱建物跡や創 58 掘立柱建物	,土から出土している。同 はすべてが鉄製品である 受状遺構が存在しており 物と密接な関連性が疑れ	司じC区遺構外出土品と る。分析資料Mol4の備考 、SS8 掘立柱建物のみ われ、7 世紀に帰属する	こしては	て構成された。 に記したよう 主一の鍛冶遺 合関連遺物と	鍛冶系 CCとな そ	の資料 で。 で あ

表78 殿河ウルミ谷遺跡鉄関連遺物分析試料一覧

			1													
	X線透過			0										0		
	前合浸															
	実測図		I	0	0	0	0	0	0	0	0	0	0	0	0	0
	カラー	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	モノクロ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	集合写真															
	観察	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	採取方法	選	選	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	直線状の切断	I
	分析位置指定	必要品	必要品	長軸端部1/3	短軸端部 1/2	長軸端部 1 /10	長軸端部 1 /10	長軸端部 1/10	短軸端部 1/3	長軸端部1/15	短軸端部 1/3	長軸端部 1/10	長軸端部 1/15	長軸端部1/3	短軸端部 1/2	全量使用
	断面樹脂			0					I					0		
	放射化分析		Ι						I							
	オロリー		Ι	I		- 1							1	- 1		
	耐火度										0					
	化学分析							 			0					
	く泉可行			0	0	0	0			0		0	0	0		0
<u>,</u> ,	る海国市										1		1	1	0	
よ胎力	E N		1	-	0	0						-	0	0	0	0
Ч				0										0		
£ Υ 3	検	0	0		O	0	0	O	0	0	0	0	0		0	0
烖 ()	マクロ			0												
	分析指示コメント	粒状滓として	鍛造剝片として	メタル部を中心に	羽口付着のガラス質滓部を中心	降部を	を提恭	再結合滓として	炉壁として	降部を	羽口として	海部を	降部を	メタル部を中心に	鋼系の羽口として	捧部を
	メタル度	\$ L	چه ل	L (●)	なし	な	な	$(\bigcirc)H$	ン な	な	\$ _	\$ L	چ ب	L (●)	2 7	銹化(△)
.	磁着度	I	I.	2	1	7	7	4		-	1	2	1	2	1	ŝ
h	重量 (g)	I	I.	110	192	3,704	1,352	1,130	75	4,540	318	1,158	4,401	324	12	20
	遺物種類	粒状滓(一括)	鍛造剝片(一括)	椀形鍛冶達? (小?、含鉄)	板屋型羽口(鍛冶)先端部 (スマキ造り?、滓付き)	板屋型椀形鍛冶滓 (特大,流出孔滓付き)	流出孔~溝滓 (鍛冶系)	再結合 译 (含鉄)	炉壁 (製錬炉?、補修)	板屋型椀形鍛冶滓? (特大、炉底塊?)	板屋型羽口(鍛冶)先端部~体部 (スマキ造り)	椀形鍛冶落 (特大)	板屋型椀形鍛冶滓 (特大、工具痕流入滓付き)	椀形鍛冶灌 (大、含鉄)	羽口先端部 (ガラス質滓付き、緑青付き)	椀形鍛冶塔 (小、含鉄)
	構成No	5 - 1	6 - 1	15	26	32	53	59	60	29	78	85	93	66	141	142
	遺構名	SS8 (据立柱建物) 貼床下 d-2	SS8 (据立柱建物) 貼床下 d - 3	C区遺構外	NR1-1 (自然河川)	NR1-1 (自然河川)	NR1-1 (自然河川)	NR1-1 (自然河川)	NR1-2 (自然河川)	NR1-2 (自然河川)	NR1-2 (自然河川)	NR1-2 (自然河川)	NR1-2 (自然河川)	NR1-2 (自然河川)	遺構外 (D8グリッド)	遺構外 (D8,D9グリッド)
	地区名	CX	CX	CK	AK	AK	AK	AK	AK	AK	AK	AK	AK	AK	CK	CK
	資奢料号	-	72	n	4	D.	9	2	~	6	10	11	12	13	14	15
1	~~ 1/m	11													L	

第2節 鉄関連遺物分析資料の考古学的観察

第3節 殿河内ウルミ谷遺跡鍛冶関連遺物の分析調査

日鉄住金テクノロジー(株)八幡事業所 TACセンター大澤正己・鈴木瑞穂

1 いきさつ

殿河内ウルミ谷遺跡は鳥取県西伯郡大山町殿河内字ウルミ谷に所在する。発掘調査地区からは古代 ~近世の鍛冶関連遺構・遺物が検出されている。今回7世紀代に推定されるC区、および10~12世紀 に推定されるA区の2地点での生産の実態を検討する目的から、分析調査を実施する運びとなった。

2. 調查方法

2-1 供試材

表79に示す。鍛冶関連遺物計15点の調査を行った。

2-2 調査項目

(1)肉眼観察

遺物の外観上の観察所見を簡単に記載した。

(2)マクロ組織

本来は肉眼またはルーペで観察した組織であるが、本稿では顕微鏡埋込み試料の断面全体像を、低 倍率で撮影したものを指す。当調査は、顕微鏡検査によるよりも広い範囲にわたって、組織の分布状 態、形状、大きさなどの観察ができる利点がある。

(3) 顕微鏡組織

滓中に晶出する鉱物及び鉄部の調査を目的として、光学顕微鏡を用い観察を実施した。観察面は供 試材を切り出した後、エメリー研磨紙の#150、#240、#320、#600、#1000、及びダイヤモンド粒子 の3µmと1µmで順を追って研磨している。なお金属組織の調査では、3%ナイタル(硝酸アルコール 液)を腐食(Etching)に用いた。

(4)ビッカース断面硬度

鉄滓中の鉱物と、金属鉄の組織同定を目的として、ビッカース断面硬度計(Vickers Hardness Tester)を用いて硬さの測定を行った。試験は鏡面研磨した試料に136[°]の頂角をもったダイヤモンドを押し込み、その時に生じた窪みの面積をもって、その荷重を除した商を硬度値としている。試料は顕微鏡用を併用し、荷重は50~200gfで測定した。

(5) EPMA (Electron Probe Micro Analyzer) 調査

化学分析を行えない微量試料や鉱物組織の微小域の組織同定を目的とする。

分析の原理は、真空中で試料面(顕微鏡試料併用)に電子線を照射し、発生する特性X線を分光後に 画像化し、定性的な結果を得る。更に標準試料とX線強度との対比から元素定量値をコンピューター 処理してデータ解析を行う方法である。

(6)化学組成分析

供試材の分析は次の方法で実施した。

全鉄分(Total Fe)、金属鉄(Metallic Fe)、酸化第一鉄(FeO):容量法。

炭素(C)、硫黄(S):燃焼容量法、燃焼赤外吸収法

二酸化硅素 (SiO₂)、酸化アルミニウム (Al₂O₃)、酸化カルシウム (CaO)、酸化マグネシウム (MgO)、酸化カリウム (K₂O)、酸化ナトリウム (Na₂O)、酸化マンガン (MnO)、二酸化チタン (TiO₂)、酸化クロム (Cr₂O₃)、五酸化燐 (P₂O₅)、バナジウム (V)、銅 (Cu)、二酸化ジルコニウム (ZrO₂): ICP (Inductively Coupled Plasma Emission Spectrometer)法:誘導結合プラズマ発光分光分析。

(7)耐火度

主に炉材の性状調査を目的とする。耐火度は、溶融現象が進行の途上で軟化変形を起こす状態度の 温度で表示される。胎土をゼーゲルコーンという三角錐の試験片に作り、1分間当り10℃の速度で温 度1000℃まで上昇させ、以降は4℃に昇温速度を落し、試験片が荷重なしに自重だけで軟化し崩れる 温度を示している。

3 調査結果

3-1 C区出土遺物

TUR-1:粒状滓¹⁾

TUR-1-1 1.0mm径

(1)肉眼観察:色調は黒灰色で僅かに歪な球状を呈する。表面は比較的平滑であるが、部分的に細か い凹凸がみられる。

(2)顕微鏡組織:第160図①②に示す。滓中のごく微細な樹枝状結晶はウスタイト(Wustite:FeO)またはマグネタイト(Magnetite:Fe₃O₄)と推定される。また明白色粒は金属鉄である。

TUR-1-2 0.8mm径

(1)肉眼観察:色調は黒灰色でやや歪な粒状を呈する。表面は比較的平滑である。

(2)顕微鏡組織:第160図③④に示す。素地部分は非晶質のガラス質滓で、内部にはごく微細な金属 鉄粒(明白色部)が多数散在する。

TUR-1-3 0.5mm径

(1)肉眼観察:色調は黒灰色できれいな粒状を呈する。また表面は平滑である。

(2)顕微鏡組織:第160図⑤⑥に示す。粒状滓(TUR-1-2)と同様、素地部分は非晶質のガラス質 滓である。また内部には非常に微細な金属鉄粒(明白色部)が多数散在する。

TUR-1-4 0.4mm径

(1)肉眼観察:色調は黒灰色で歪な粒状を呈する。

(2)顕微鏡組織:第160図⑦⑧に示す。内部には灰褐色多角形結晶マグネタイトが凝集気味に晶出する。

TUR-1-5 0.3mm径

(1)肉眼観察:色調は黒灰色で歪な粒状を呈する。

(2)顕微鏡組織:第161図①②に示す。粒状滓(TUR-1-4)と同様、内部には灰褐色多角形結晶マ グネタイトが凝集気味に晶出する。

TUR-1-6 0.2mm径

(1)肉眼観察:色調は暗灰色できれいな球状を呈する。表面は平滑である。

(2)顕微鏡組織:第161図③④に示す。やはり粒状滓(TUR-1-4、5)と同様に、内部には灰褐色 多角形結晶マグネタイトが凝集気味に晶出する。 今回調査を実施した6点の粒状滓のうち、4点(TUR-1-1、4~6)は鉄酸化物主体で、鉄素 材を熱間で鍛打加工する際、表面の鉄酸化物が飛散して生じたものと推定される。一方2点はガラス 質滓主体であった。こちらは鉄素材の酸化防止のため表面に塗布されたか鍛接剤に用いた粘土汁が溶 融して生じたものと判断される。どちらも熱間での鍛冶加工に伴う微細な鍛冶関連遺物といえる。

TUR-2: 鍛造剝片²⁾

 $TUR - 2 - 1 \quad 3.0 \times 2.0 \times 0.4 mm$

(1)肉眼観察:送付されたサンプル中では比較的厚手の剝片である。色調は表裏面とも黒灰色で、緩 やかな凹凸がみられる。

(2)顕微鏡組織:第161図⑤⑥に示す。表層(②の写真上側)に部分的に観察される明白色部はヘマタ イト(Hematite:Fe₂O₃)と推定される。また上側の灰褐色層はマグネタイト、下側の灰色層はウスタ イトである。

TUR - 2 - 2 2.9×1.6×0.2mm

(1)肉眼観察:やや薄手で平坦な剝片である。色調は表裏面とも黒灰色である。

(2)顕微鏡組織:第161図⑦⑧に示す。表面(④の写真上側)のごく薄い明白色層はヘマタイト、中間の灰褐色層はマグネタイト、内側の灰色層はウスタイトである。

 $TUR - 2 - 3 \quad 2.2 \times 1.6 \times 0.2 mm$

(1)肉眼観察:やや薄手で平坦な剝片である。色調は表裏面とも青灰色で、表面には微かな凹凸がみられる。

(2)顕微鏡組織:第162図①②に示す。表面(②の写真上側)のごく薄い明白色層はヘマタイト、中間の灰褐色層はマグネタイト、内側の灰色層はウスタイトである。

 $TUR - 2 - 4 \quad 1.6 \times 1.6 \times 0.2 mm$

(1)肉眼観察:ごく小形の剝片である。色調は表裏面とも暗灰色で、比較的平坦である。

(2)顕微鏡組織:第162図③④に示す。表面(④の写真上側)のごく薄い明白色層はヘマタイト、中間の灰褐色層はマグネタイト、内側の灰色層はウスタイトである。またウスタイト層内には粒状結晶の 痕跡が確認される。

 $TUR - 2 - 5 \quad 2.1 \times 1.8 \times 0.15 mm$

(1)肉眼観察:薄手で比較的平坦な剝片である。色調は表裏面とも暗灰色である。

(2)顕微鏡組織:第162図⑤⑥に示す。表層のヘマタイトは不明瞭であるが、灰褐色のマグネタイト、 灰色のウスタイト層が確認される。

 $TUR - 2 - 6 \quad 2.0 \times 1.6 \times 0.15 mm$

(1)肉眼観察:薄手の剝片である。色調は表裏面とも暗灰色で、裏面側はごく微細な凹凸が著しい。
 (2)顕微鏡組織:第162図⑦⑧に示す。表面(⑧の写真上側)のごく薄い明白色層はヘマタイト、中間の灰褐色層はマグネタイト、内側の灰色層はウスタイトである。ウスタイト層内には粒状結晶の痕跡が観察される。

分析調査を実施した鍛造剝片6点は、すべて薄膜状の鉄酸化物であった。鉄素材の熱間加工時、表面に生じた鉄酸化物が鍛打によって剝離したものと判断される。

TUR-3: 椀形鍛冶滓(含鉄)

(1)肉眼観察:銹化に伴う放射割れが著しい、含鉄の椀形鍛冶滓である(110g)。特殊金属探知器の L(●)で反応があり、内部には金属鉄が残存すると考えられる。

(2)マクロ組織:第163図①に示す。観察面では滓中にごく微細な金属鉄が多数散在しており、まと まった金属鉄部はみられない。

(3)顕微鏡組織:第163図②③に示す。不定形の明白色部は金属鉄である。3%ナイタルで腐食した ところ、ほとんど炭素を含まないフェライト(Ferrite: a鉄)単相の組織が確認された。また滓中の 淡茶褐色多角形結晶はウルボスピネル(Ulvöspinel:2FeO·TiO₂)とヘルシナイトを主な端成分とする 固溶体³⁾と推定される。白色粒状結晶はウスタイトまたはマグネタイトである。

(4)ビッカース断面硬度:第163図③の金属鉄(フェライト単相)部の硬度を測定した。硬度値は106Hv と軟質で組織に見合った値といえる。また淡茶褐色多角形結晶の硬度値は780Hvであった。ウルボス ピネル(Ulvöspinel:2FeO·TiO₂)としては高値傾向を示すため、ウルボスピネルとヘルシナイトを主 な端成分とする固溶体の可能性が高い。さらに白色粒状結晶の硬度値は599Hvであった。ウスタイト の文献硬度値450~500Hvより硬質で、マグネタイトの文献硬度値500~600Hvの範疇に入る。ただし内 部に微細な淡褐色結晶(ウルボスピネルとヘルシナイトを主な端成分とする固溶体)が多数晶出するた め、素地部分がウスタイトでもこの影響で硬質の値となった可能性も高い。ウスタイトまたはマグネ タイト、ないしは両者の混晶の可能性も提示しておきたい⁴。

(5)化学組成分析:表80に示す。全鉄分(Total Fe)55.80%に対して、金属鉄(Metallic Fe)1.09%、酸化第1鉄(FeO)24.14%、酸化第2鉄(Fe₂O₃)51.40%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO + MgO+K₂O+Na₂O)8.57%と低く、塩基性成分(CaO+MgO)も1.31%と低値である。製鉄原料の砂鉄(含チタン鉄鉱)起源の二酸化チタン(TiO₂)は4.21%とやや低めであった。またバナジウム(V)は 0.15%、酸化マンガン(MnO)0.17%、二酸化ジルコニウム(ZrO₂)0.16%であった。銅(Cu)は<0.01% と低値である。

古市築地ノ峯東通第2遺跡や、赤坂小丸山遺跡といった地域周辺製鉄遺跡から出土した製錬滓は、 チタン(TiO₂)7%以上含有する事例が多い。これらの製錬滓と比較すると当鉄滓はチタン含有率が低 減しており、精錬鍛冶滓と推定される。鍛冶原料(鉄塊系遺物)に固着した不純物(砂鉄製錬滓)の除去 作業に伴う反応副生物といえる。

TUR-14: 羽口

(1)肉眼観察:ごく小形の羽口先端部の破片である(12g)。外面には黒色ガラス質滓が付着する。ガ ラス質滓表面はごく小形の木炭痕による凹凸が目立つ。また破面には微細な緑青が付着しており、銅 (または青銅)の溶解に用いられたものと推測される。

(2)顕微鏡組織:第169図①~③に示す。①の写真上側は外面表層のガラス質滓である。内部にはご く微細な淡橙色の銅粒が多数点在する。②③中央は銅粒の拡大である。酢酸・硝酸・アセトン混合液 で腐食したところ、多角形結晶(Cu a 相)が確認された。

(3)ビッカース断面硬度:第169図③の銅粒の硬度を測定した。硬度値は64Hvであった。非常に軟質 で、純度の高い銅と推定される。

(4)EPMA調査:第169図④にガラス質滓中の溶着金属の反射電子像(COMP)を示す。中央の金属粒

は特性X線像をみると銅(Cu)に強い反応がある。定量分析値は95.6%Cu(分析点13)と純度の高い銅 であった。またガラス質滓部分の定量分析値は55.2%SiO₂-21.2%Al₂O₃-1.5%CaO-1.4%K₂O-1.8%Na₂O-3.4%FeO-16.0CuO(分析点6)であった。非晶質珪酸塩で、銅を高い割合で固溶する。

以上の調査結果から、当羽口は銅の溶解に用いられたことが確認された。銅小物の鋳造に伴う遺物 の可能性が高い。

TUR-15: 椀形鍛冶滓

(1)肉眼観察:小形で偏平な椀形鍛冶滓の側面端部破片である(20g)。側面2面は破面。滓の地の色 調は灰褐色で弱い着磁性がある。また表面には薄く黄褐色の土砂や茶褐色の鉄銹化物が付着するが、 特殊金属探知器での反応はない。

(2)顕微鏡組織:第170図①~③に示す。滓中の白色樹枝状・粒状結晶はウスタイトまたはマグネタ イトと推定される。さらに淡灰色柱状結晶ファヤライトが晶出する。製鉄原料の砂鉄起源の鉄酸化物 の結晶はなく、鍛錬鍛冶滓の晶癖といえる。また①の不定形青灰色部は銹化鉄である。切断面では微 細な銹化鉄部が点在するが、まとまった鉄部はみられなかった。

(3)ビッカース断面硬度:第170図③の白色粒状結晶の硬度を測定した。硬度値は483Hv、498Hv、 516Hvであった。前二者はウスタイトの文献硬度値、後者はマグネタイトの文献硬度値の範囲であり、 両者の混晶の可能性が高い。また淡灰色柱状結晶の硬度値は673Hv、678Hvであった。ファヤライトの 文献硬度値の範囲内であり、ファヤライトと推定される。

(4) EPMA調査:第170図④に滓部の反射電子像(COMP)を示す。白色樹枝状結晶は特性X線像では 鉄(Fe)、酸素(O)に反応がある。定量分析値は100.8%FeO(分析点7)、92.6%FeO(分析点8)であっ た。ウスタイト(Wustite:FeO)またはマグネタイト(Magnetite:Fe₃O₄)、ないしは両者の混晶と推定 される。微細な暗色多角形結晶は特性X線像をみるとアルミニウム(Al)に強い反応がある。定量分 析値は50.9%FeO-51.3%Al₂O₃であった(分析点9)。ヘルシナイト(Hercynite:FeO·Al₂O₃)に同定さ れる。淡灰色盤状結晶は特性X線像をみると珪素(Si)に強い反応がある。定量分析値は71.2%FeO-31.1%SiO₂であった(分析点10)。ファヤライト(Fayalite:2FeO·SiO₂)に同定される。

(5)化学組成分析:表80に示す。全鉄分(Total Fe)53.70%に対して、金属鉄(Metallic Fe)0.06%、酸化第1鉄(FeO)53.17%、酸化第2鉄(Fe₂O₃)17.60%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO + MgO+K₂O+Na₂O)26.30%で、このうち塩基性成分(CaO+MgO)は1.48%と低値である。製鉄原料の砂鉄(含チタン鉄鉱)起源の二酸化チタン(TiO₂)も0.37%と低値であった。さらにバナジウム(V)が0.01%、酸化マンガン(MnO)0.03%、二酸化ジルコニウム(ZrO₂)0.01%、銅(Cu)<0.01%といずれも低減傾向を示す。

鉄滓は鉄酸化物(FeO)と炉材粘土の溶融物(SiO₂主成分)主体の鉄滓である。製鉄原料の砂鉄起源の 脈石成分(TiO₂、V、MnO)は低減傾向が著しく、鍛錬鍛冶滓に分類される。

3-2 A区出土遺物

TUR-4:羽口

(1)肉眼観察:羽口の先端部破片である(192g)。外面には灰褐色の滓が固着する。滓部の表面はや や風化気味で、小形の木炭痕や細かい気孔が残材するが比較的緻密である。また羽口の外面には4~ 6mm幅の浅い凹凸があり、成形時の簀巻き痕と推定される。板屋型羽口の指摘がある。胎土部分は粘 土質で、スサを混和している。

(2)顕微鏡組織:第163図④~⑥に示す。④の右上は付着滓、左下の暗色部は羽口粘土が溶融して生 じたガラス質滓である。⑤は付着滓、⑥は付着滓とガラス質滓が接する部分の拡大である。付着滓中 の淡茶褐色多角形結晶はウルボスピネルとヘルシナイトを主な端成分とする固溶体と推定される。さ らに暗褐色多角形結晶ヘルシナイト、白色粒状結晶ウスタイト、淡灰色柱状結晶ファヤライトが晶出 する。砂鉄系精錬鍛冶滓の晶癖といえる。また⑥左下のごく微細な明白色粒は金属鉄である。

(3)ビッカース断面硬度:第163図⑤の淡茶褐色多角形結晶の硬度を測定した。硬度値は829Hvであった。ウルボスピネル(Ulvöspinel:2FeO・TiO₂)としては硬質であり、ウルボスピネルとヘルシナイトを主な端成分とする固溶体の可能性が高い。また暗褐色多角形結晶の硬度値は1160Hvと非常に硬質で、ヘルシナイトと推定される。さらに白色粒状結晶の硬度値は563Hvであった。ウスタイトとしては硬質でマグネタイトの可能性も高い。両者の混晶の可能性も考えられる。

(4)化学組成分析:表80に示す。強熱減量(Ig loss)は1.68%と低値であった。強い熱影響を受けて、 結晶構造水が飛散した状態である。鉄分(Fe₂O₃)は7.48%と非常に高値であった。ただしこれは羽口 粘土以外の付着滓の影響も受けた値と考えられる。また酸化アルミニウム(Al₂O₃)が24.04%と非常に 高値で、耐火性に有利に働くと考えられる。

以上の調査結果から、当羽口に付着する滓は精錬鍛冶滓(始発原料は砂鉄)であることが明らかとなった。鍛冶原料(鉄塊系遺物)遺物に固着した不純物(砂鉄製錬滓)の除去作業に用いられたものと判断される。

TUR-5:椀形鍛冶滓

(1)肉眼観察:非常に大形でほぼ完形の椀形鍛冶滓と推測される(3,704g)。滓の地の色調は灰褐色 で表面はやや風化気味である。上面には木炭痕が散在するが比較的平坦で、下面は比較的きれいな深 い椀状で、一部灰褐色の炉床土が付着する部分と木炭痕による凹凸が顕著な部分が確認される。側面 端部には棒状の滓が突出しており、流出孔滓の可能性が指摘されている。

(2)顕微鏡組織:第164図①~③に示す。淡茶褐色多角形結晶はウルボスピネル、またはウルボスピ ネルとヘルシナイトを主な端成分とする固溶体と推定される。さらに少量白色樹枝状結晶ウスタイト、 発達した淡灰色盤状結晶ファヤライトが晶出する。

(3)ビッカース断面硬度:第164図②の淡茶褐色多角形結晶の硬度を測定した。硬度値は650Hv、 723Hvであった。前者はウルボスピネル、後者はウルボスピネルとヘルシナイトを主な端成分とする 固溶体の可能性が高い。また白色樹枝状結晶の硬度値は427Hv、淡灰色盤状結晶の硬度値は524Hvであ った。風化の影響か、ともにウスタイト、ファヤライトの文献硬度値より軟質であった。ただし後述 のEPMA調査結果も勘案すると、ウスタイト、ファヤライトに同定される。

(4) EPMA調査:第164図④に滓部の反射電子像(COMP)を示す。白色粒状結晶は特性X線像では鉄(Fe)、酸素(O)に反応がある。定量分析値は98.7%FeO-1.2%TiO₂(分析点1)であった。ウスタイト(Wustite:FeO)と推定される。淡茶褐色多角形結晶は特性X線像ではチタン(Ti)に強い反応がある。定量分析値は71.5%FeO-17.4%TiO₂-9.4%Al₂O₃(分析点2)、63.1%FeO-20.3%TiO₂-13.7%Al₂O₃(分析点3)であった。ウルボスピネル(Ulvöspinel:2FeO・TiO₂)とヘルシナイト

(Hercynite:FeO·Al₂O₃)を主な端成分とする固溶体と判断される。また暗色多角形結晶は特性X線像 をみるとアルミニウム(Al)に強い反応がある。定量分析値は48.1%FeO-46.0%Al₂O₃-3.8%TiO₂で あった(分析点4)。ヘルシナイト(Hercynite:FeO·Al₂O₃)に同定される。淡灰色盤状結晶は特性X線 像をみると珪素(Si)に強い反応がある。定量分析値は63.1%FeO-4.2%MgO-32.4%SiO₂であった (分析点5)。ファヤライト(Fayalite:2FeO·SiO₂)に同定される。さらに微細な明白色粒は特性X線 像では鉄(Fe)に反応がある。定量分析値は103.2%Fe(分析点12)であった。金属鉄(Metallic Fe)であ る。

(5)化学組成分析:表80に示す。全鉄分(Total Fe)41.44%に対して、金属鉄(Metallic Fe)0.07%、
 酸化第1鉄(FeO)42.25%、酸化第2鉄(Fe₂O₃)12.19%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO + MgO+K₂O+Na₂O)32.47%で、このうちに塩基性成分(CaO+MgO)は3.63%であった。また砂鉄
 (含チタン鉄鉱)起源の二酸化チタン(TiO₂)は7.51%と高値であった。バナジウム(V)は0.32%。酸化
 マンガン(MnO)0.28%、二酸化ジルコニウム(ZrO₂)0.32%である。銅(Cu)は<0.01%と低値であった。

当鉄滓は地域周辺の砂鉄製錬滓とよく似た組成で、チタン含有率も同等(TiO₂:7%台)である。分 析結果のみからは砂鉄製錬滓の可能性も提示できる。〔下市築地ノ峯東通第2遺跡出土製錬滓のチタ ン(TiO₂)含有率は6.04%~8.17%、赤坂小丸山遺跡出土製錬滓では7.24%~8.99%であった(含鉄鉄滓 は除く)。〕ただし後述する板屋型羽口(TUR-10)の先端には、通常砂鉄製錬滓に分類されるウルボ スピネル・ファヤライト組成の滓が付着している。砂鉄製錬滓との分離が悪い鍛冶原料(鉄塊系遺物) の不純物除去を多量に行う場合、製錬滓と近似した成分の精錬鍛冶滓が生じる可能性があるかは、今 後の検討課題といえる。

TUR-6:流出孔~溝滓

(1)肉眼観察:非常に大形で厚手の流出孔~溝滓の破片と推定される(1,352g)。上面は弱い流動状で、下面には炉壁粉が点々と固着する。側面1面は破面で、非常に緻密である。

(2)顕微鏡組織:第165図①~③に示す。滓中には還元・滓化が進んだ状態の砂鉄(含チタン鉄鉱)粒 子が確認される。②中央はその拡大で、内部に点在する微細な明白色粒は還元によって生じた金属鉄 である。また③は滓部の拡大である。淡茶褐色多角形結晶ウルボスピネルとヘルシナイトを主な端成 分とする固溶体と推定される。さらに発達した淡灰色盤状結晶ファヤライトが晶出する。砂鉄製錬滓 の晶癖といえる。

(3)ビッカース断面硬度:第165図③の淡茶褐色多角形結晶の硬度を測定した。硬度値は901Hv、 942Hvと硬質で、ウルボスピネルとヘルシナイトを主な端成分とする固溶体の可能性が高いと考えら れる。また淡灰色盤状結晶の硬度値は702Hv、709Hvであった。ファヤライトの文献硬度値より僅かに 硬質であり、マグネシア(MgO)などを微量固溶する可能性がある。

(4)化学組成分析:表80に示す。全鉄分(Total Fe)42.81%に対して、金属鉄(Metallic Fe)0.05%、酸化第1鉄(FeO)45.13%、酸化第2鉄(Fe₂O₃)10.98%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO+MgO+K₂O+Na₂O)33.42%で、このうち塩基性成分(CaO+MgO)は3.63%である。また砂鉄(含チタン鉄鉱)起源の二酸化チタン(TiO₂)は5.65%であった。バナジウム(V)は0.19%、酸化マンガン(MnO)0.28%、二酸化ジルコニウム(ZrO₂)0.26%で、銅(Cu)は<0.01%と低値である。

当鉄滓のチタン含有率は、周辺地域の砂鉄製錬滓と比較すると若干低めである。しかし内部に微細 な金属鉄が晶出した被熱砂鉄(含チタン鉄鉱)が含まれることや、滓中にウスタイト結晶が見られない ことなどから、当鉄滓は砂鉄製錬滓の可能性が高い。

TUR-7:再結合滓

(1)肉眼観察:非常に大形で厚板状の再結合滓(1,130g)である。上面は比較的平坦で、下面側は緩やかな椀状を呈する。内部には非常に微細な鉄滓や木炭の破片が含まれる。また特殊金属探知器のH
 (○)で反応があるため、内部に金属鉄が含まれる可能性がある。

(2)顕微鏡組織:第165図④~⑥に示す。内部には非常に微細な粒状滓や鍛造剝片が多数含まれている。⑤はその拡大である。また鉄滓破片には砂鉄製錬滓と鍛冶滓が混在する。⑥は砂鉄製錬滓の拡大で、滓中には白色針状結晶イルミナイト(Ilmenite:FeO·TiO₂)が晶出する。高温下で生じた砂鉄製 錬滓の晶癖といえる⁵⁾。

以上の調査結果から、当鉄滓は砂鉄製錬に伴う微細遺物と鍛冶関連遺物の双方を含む再結合滓である。

TUR-8:炉壁

(1)肉眼観察:強い熱影響を受けて内面表層がガラス質化した、製鉄炉の炉壁片(75g)と推定される。 側面には補修の痕跡が残る(同様の補修痕は赤坂小丸山遺跡でも確認されている)。また炉壁粘土中に はスサが混和されている。

(2)顕微鏡組織:第166図①~③に示す。内面表層のガラス質滓中には、灰褐色多角形結晶マグネタ イト、淡灰色結晶ファヤライトが部分的に晶出する。断定は難しいが製鉄原料の砂鉄の分解・滓化に よる可能性が考えられる。

TUR-9:椀形鍛冶滓

(1)肉眼観察:非常に大型の鉄滓破片である(14,540g)。板屋型の椀形鍛冶滓または製鉄炉の炉底塊の可能性が指摘されている。上面は中央に向かい窪み気味で、側面から下面は深い椀状を呈する。非常に緻密で重量感のある滓である。

(2)顕微鏡組織:第166図④~⑥に示す。淡茶褐色多角形結晶はウルボスピネルとヘルシナイトの固 溶体と推定される。さらに淡灰色盤状結晶ファヤライトが晶出する。

(3)ビッカース断面硬度: Photo.7⑥の淡茶褐色多角形結晶の硬度を測定した。硬度値は924Hv、 967Hvと硬質で、ウルボスピネルとヘルシナイトを主な端成分とする固溶体の可能性が高いと考えら れる。また淡灰色盤状結晶の硬度値は516Hv、629Hvであった。前者はファヤライトとしてはやや軟質 である。ライム(CaO)など、他の元素を微量固溶している可能性が考えられる。

(4)化学組成分析:表80に示す。全鉄分(Total Fe)39.41%に対して、金属鉄(Metallic Fe)0.03%、酸化第1鉄(FeO)36.56%、酸化第2鉄(Fe₂O₃)15.67%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO+MgO+K₂O+Na₂O)34.57%で、このうち塩基性成分(CaO+MgO)は3.42%である。製鉄原料の砂鉄(含チタン鉄鉱)特有成分の二酸化チタン(TiO₂)は6.55%であった。またバナジウム(V)は0.33%、酸化マンガン(MnO)0.22%、二酸化ジルコニウム(ZrO₂)0.22%である。銅(Cu)は<0.01%と低値で

あった。

当鉄滓は被熱砂鉄粒子が確認された流出孔~溝滓(TUR-6)よりもチタン(TiO₂)含有率が高く、 滓中にウスタイト結晶もみられないことから、砂鉄製錬滓の可能性も無視できない。ただし椀形鍛冶 滓(TUR-5)の項でも述べたように、共伴する板屋型羽口(TUR-10)表層にウルボスピネル・ファ ヤライト組成の滓が溶着していることから、製錬滓との分離が悪い状態の鍛冶原料を、多量に処理す る時に生じた精錬鍛冶滓の可能性も考慮する必要がある。

TUR-10: 羽口

(1)肉眼観察:板屋型羽口の先端部破片と推定される(318g)。通風孔の直径は約4.3cm、羽口の厚み は4.7~5.2cm程である。先端部は強い熱影響を受けて黒色ガラス質滓化してする。また外面側には成 形時の簀巻き痕が部分的に観察される。胎土は緻密で、若干スサを混和している。

(2)顕微鏡組織:第167図①~③に示す。①の上側は付着滓部分で、②はその拡大である。淡茶褐色 多角形結晶はウルボスピネル(またはウルボスピネルとヘルシナイトを主な端成分とする固溶体)と推 測される。さらに淡灰色柱状結晶ファヤライトが晶出する。

(3)化学組成分析:表80に示す。強熱減量(Ig loss)は3.76%と低めであった。熱影響を受けてかなり 結晶構造水が飛散した状態である。鉄分(Fe₂O₃)は3.25%と低くはないが、酸化アルミニウム(Al₂O₃) が26,37%と非常に高値で、耐火性に有利な成分系である。

(4)耐火度:1440℃であった。鍛冶羽口としては耐火性の高い性状といえる。

多量の鍛冶原料(鉄塊系遺物)の不純物(分離不十分な砂鉄製錬滓)を除去するため、耐火性の高い粘 土を選択していた可能性が考えられる。なお炉材粘土の高アルミナ(Al₂O₃)傾向は、製鉄遺構が検出 された赤坂小丸山遺跡でも確認されており、耐火性の高い粘土は地域で調達可能であったと推測され る。

また付着滓の鉱物組成は、通常砂鉄製錬滓に分類されるウルボスピネル・ファヤライト組成であっ た。上述したような、未分離の砂鉄製錬滓を多量に含む鍛冶原料の不純物除去(精錬鍛冶)を行なう場 合、製錬滓と同様の成分の滓が羽口周辺に溶着する可能性がある。ただし滓が溶融状態まで加熱され るため、金属鉄部もかなり酸化して滓中に移行する(ウスタイト結晶が晶出する)ものと予想される。 精錬鍛冶作業に伴い、砂鉄製錬滓とほとんど成分の変わらない非常に大形の椀形鍛冶滓が生じるもの か、今後慎重に検討する必要があろう。

TUR-11: 椀形鍛冶滓

(1)肉眼観察:平面不整楕円状で非常に大型の椀形鍛冶滓(1,158g)と推定される。上面は平坦気味 で緩やかな流動状を呈する。下面は浅い椀形で、ごく小形の木炭痕や炉床土の付着がみられる。滓の 地の色調は灰褐色で、重量感のある滓である。

(2)顕微鏡組織:第167図④~⑥に示す。淡茶褐色多角形結晶はウルボスピネルとヘルシナイトの固 溶体と推定される。さらに白色粒状結晶ウスタイト、淡灰色柱状結晶ファヤライトが晶出する。

(3)ビッカース断面硬度:第167図⑥の淡茶褐色多角形結晶の硬度を測定した。硬度値は828Hv、 921Hvであった。両者ははウルボスピネルとヘルシナイトを主な端成分とする固溶体の可能性が高い と考えられる。また淡灰色盤状結晶の硬度値は644Hvで、ファヤライトに同定される。さらに白色粒 状結晶の硬度値は406Hv、420Hvであった。やや軟質であるがウスタイトと推定される。

(4)化学組成分析:表80に示す。全鉄分(Total Fe)43.17%に対して、金属鉄(Metallic Fe)0.05%、
酸化第1鉄(FeO)42.33%、酸化第2鉄(Fe₂O₃)14.61%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO + MgO+K₂O+Na₂O)32.98%で、塩基性成分(CaO+MgO)は4.45%をであった。また砂鉄(含チタン 鉄鉱)起源の二酸化チタン(TiO₂)は4.92%とやや低めである。バナジウム(V)は0.21%、酸化マンガン (MnO)0.29%、二酸化ジルコニウム(ZrO₂)0.19%であった。銅(Cu)は<0.01%と低値である。

当鉄滓はウスタイト結晶が多数晶出していることや、チタン(TiO₂)含有率がやや低め傾向を示す ことから、精錬鍛冶滓の可能性が高い。鍛冶原料(鉄塊系遺物)に固着した不純物(砂鉄製錬滓)の除去 作業に伴う反応副生物といえよう。

TUR-12: 椀形鍛冶滓

(1)肉眼観察:大形で厚手の椀形鍛冶滓の破片と推定される(4,401g)。上面には丸棒状の工具痕が 残る。下面は深い椀状で表面には薄く炉床土が付着する。側面4面は破面で、芯部に木炭痕や気孔が 目立つ。一方下面側は緻密である。

(2)顕微鏡組織:第168図①~③に示す。滓中の淡茶褐色多角形結晶はウルボスピネルとヘルシナイトを主な端成分とする固溶体と推定される。さらに発達した白色粒状結晶ウスタイト、淡灰色柱状結晶ファヤライトが晶出する。

また③は下面表層の付着物の拡大である。砂鉄粒子や、高温下で生成した砂鉄製錬滓〔白色針状結 晶イルミナイト(Ilmenite:FeO·TiO₂)、淡褐色片状結晶シュードブルーカイト(Pseudobrookite: Fe₂O₃·TiO₂)が晶出する〕の小破片が確認された。

(3)ビッカース断面硬度:第168図②の淡茶褐色多角形結晶の硬度を測定した。硬度値は728Hv、 800Hvと硬質で、ウルボスピネルとヘルシナイトを主な端成分とする固溶体の可能性が高い。また白 色粒状結晶の硬度値は412Hvであった。やや軟質であるが、ウスタイトと推定される。

(4)化学組成分析:表80に示す。全鉄分(Total Fe)42.29%に対して、金属鉄(Metallic Fe)0.03%、
 酸化第1鉄(FeO)29.59%、酸化第2鉄(Fe₂O₃)27.54%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO + MgO+K₂O+Na₂O)27.93%で、このうち塩基性成分(CaO+MgO)は2.80%である。製鉄原料の砂鉄(含チタン鉄鉱)起源の二酸化チタン(TiO₂)は5.77%であった。またバナジウム(V)0.30%、酸化マンガン(MnO)0.21%、二酸化ジルコニウム(ZrO₂)0.16%、銅(Cu)は<0.01%と低値である。

当鉄滓の発達したウスタイトが多数晶出する点は精錬鍛冶滓らしい特徴といえる。ただし被熱砂鉄 が確認された流出溝滓(TUR-6)よりチタン含有率が高いため、成分的には砂鉄製錬滓の可能性も 考えられる〔赤坂小丸山遺跡の出土製錬滓でもウスタイトが晶出するものが複数確認されている。チ タン(TiO₂)の含有率が低めの砂鉄が製鉄原料である場合や、還元雰囲気の弱い部分で生成した場合、 こうしたウスタイトの残る製錬滓も珍しくはない。〕

TUR-13: 椀形鍛冶滓(含鉄)

(1)肉眼観察:椀形鍛冶滓の破片(324g)である。上面が弱い流動状を呈しており、下面には炉壁粉が点々と固着する。側面3面と上面の一部は破面である。破面の上半部は木炭の噛み込みが目立ち、 下半分は緻密である。また特殊金属探知器のL(●)で反応があり、内部に金属鉄が残存すると考えら れる。

(2)顕微鏡組織:第168図④~⑥に示す。④⑤および⑥の明白色部は金属鉄である。④は黒色層状の パーライト(Pearlite)素地に白色針状のセメンタイト(Cementite:Fe₃C)が析出する過共析組織(C> 0.77%)、⑤は表層側に一部針状フェライトが析出する亜共析組織~共析組織(C \leq 0.77%)を呈する。 また⑥の金属鉄部はほとんど炭素を含まないフェライト単相の組織であった。

一方⑥の暗色部は滓部である。白色樹枝状結晶ウスタイトが凝集して晶出する。その内部には淡茶 褐色結晶が多数晶出する。これはウルボスピネルとヘルシナイトを主な端成分とする固溶体と推定さ れる。

(3)ビッカース断面硬度:第168図④~⑥の金属鉄部の硬度を測定した。最も炭素含有率の高い過共 析組織部分(④)の硬度値は255Hv、266Hvであった。また亜共析組織~共析組織(⑤)の硬度値は137Hv、 192Hv、200Hv、最も炭素含有量の低いフェライト単相の組織(⑥)の硬度値は74Hvと軟質であった。そ れぞれ組織に見合った値である。

さらに⑥の白色樹枝状結晶の硬度値は423Hv、389Hv、447Hvであった。風化の影響か、やや軟質であるが、結晶の色調・形態等からウスタイトと推定される。

(4)化学組成分析:表80に示す。全鉄分(Total Fe)53.25%に対して、金属鉄(Metallic Fe)0.21%、
 酸化第1鉄(FeO)36.15%、酸化第2鉄(Fe₂O₃)35.66%の割合であった。造滓成分(SiO₂+Al₂O₃+CaO + MgO+K₂O+Na₂O)は14.79%と低めで、塩基性成分(CaO+MgO)は1.63%であった。また製鉄原料の砂鉄(含チタン鉄鉱)起源の二酸化チタン(TiO₂)は1.81%と低めである。バナジウム(V)は0.10%、
 酸化マンガン(MnO)0.08%、二酸化ジルコニウム(ZrO₂)0.06%であった。銅(Cu)は<0.01%と低値である。

当鉄滓は製錬滓と比較してチタン(TiO₂)含有率が低減傾向を示しており、精錬鍛冶滓に分類される。また内部にはごく小形の金属鉄部が確認された。炭素含有量は部位によってばらつきが大きいが、 最もまとまりのよい部分で、0.5~1.5%程度の鋼と推測される。

4 まとめ

殿川内ウルミ谷遺跡の鍛冶関連遺物を調査した結果、以下の点が明らかとなった。

4-1 C区出土遺物

7世紀代に推定されるC区からは、精錬鍛冶〜鍛錬鍛冶工程で生じた関連遺物が確認された。精錬 鍛冶滓の組成からは、砂鉄の製錬生成鉄塊が鍛冶原料であったと判断される。地域周辺で鉄生産が行 われた可能性が考えられる。また銅小物の鋳造に関連する羽口も確認された。

〈1〉椀形鍛冶滓(TUR-3)は精錬鍛冶滓に分類される。チタン(TiO₂)含有率は4.21%あり、始発原料は砂鉄である。またチタン以外の砂鉄起源の脈石成分(他にV、MnO、ZrO₂など)も、地域の製鉄 遺跡出土製錬滓と似た傾向を示している。鳥取県下では7世紀後半の製鉄遺跡の検出例はまだないが、 地域周辺で鉄生産が行われていたことを示唆する遺物といえる。

〈2〉椀形鍛冶滓(TUR-15)は鍛錬鍛冶滓に分類される。チタン(TiO₂)含有率は0.37%と低減傾向が 顕著で、鉄素材を熱間で鍛打加工して鉄器を製作したことを示す滓である。また粒状滓(TUR-1) や鍛造剝片(TUR-2)など、やはり熱間での鍛打加工に伴う微細遺物も確認されており、遺跡内で 鍛造鉄器の製作が行われたと判断される。 〈3〉羽口(TUR-14)は銅素材の溶解に用いられたことが明らかとなった。先端のガラス質滓中には 銅粒が多数溶着しており、銅小物の鋳造が行われていた可能性が高いと考えられる。

4-2 A区出土遺物

10~12世紀代と推定される自然河川跡から出土した鉄滓は、砂鉄製錬滓か精錬鍛冶滓かの判別が難 しいものが多数含まれていた。製錬工程で滓との分離が悪い鉄塊(軟鉄~鋼)が生産されており、後続 の鍛冶工程で不純物除去(精錬鍛冶)作業を多量に実施したため、大形で製錬滓との区分が困難な鉄滓 が多数生じたものと推察される。また鉄滓の少なくとも一部は砂鉄製錬滓の可能性が高く、製鉄~精 錬鍛冶作業が近接地で行われていたと考えられる。

〈1〉再結合滓(TUR-7)には、鍛冶滓や粒状滓、鍛造剝片などの微細遺物に混じって、高温下で生成した砂鉄製錬滓の破片が確認された。鉄滓(TUR-12)の表層にも同様の製錬滓片や砂鉄が付着する。炉壁(TUR-8)も製鉄炉の炉壁破片の可能性がある。双方の関連遺物が混在するような近距離で製鉄と鍛冶遺跡が稼動していたものと推測される。

〈2〉流出孔~溝滓(TUR-6)は、内部に微細な金属鉄が晶出した被熱砂鉄(含チタン鉄鉱)が含まれること、ウスタイトの晶出がないこと等から、砂鉄製錬に伴う反応副生物(砂鉄製錬滓)と推測される。

また椀形滓(TUR-5、9、11、12)も鳥取県内の古代の砂鉄製錬滓とよく似た化学組成であった [Fig.1(註6)]。特にチタンの割合の高い滓は、製錬滓と同等の含有率となっている。この結果から、 少なくとも一部のよりチタン(TiO₂)の割合の高い遺物は、砂鉄製錬滓の可能性が高いと考えられる。 〈3〉一方、調査を実施した板屋型羽口2点のうち、1点(TUR-10)には、通常であれば砂鉄製錬滓 と判断するような、ウルボスピネル・ファヤライト組成の滓が付着していた。未分離の砂鉄製錬滓を 多量に含む鍛冶原料の不純物除去(精錬鍛冶)を行ったため、製錬滓とほとんど変わらない滓が羽口周 辺に溶着した可能性が考えられる。

ただし付着滓を除去する際には、製錬滓が溶融するまで加熱されるため、金属鉄部もかなり酸化し て滓中に移行する(ウスタイト結晶が晶出する)と想定される。精錬鍛冶作業に伴い、砂鉄製錬滓とほ とんど成分の変わらない大形の椀形鍛冶滓が生じるものかは、今後の検討課題といえる。

残る1点(TUR-4)には、ウスタイトを伴う精錬鍛冶滓が付着していた。現時点では、遺構に伴わない個々の出土鉄滓が製錬滓か後続の精錬鍛冶滓かを厳密に区分するのは難しい。遺跡周辺では砂鉄製錬滓との分離が悪い状態の鉄塊(軟鉄~鋼)が多量に生産されたため、後続してその除去(精錬鍛冶)作業を集中して行う必要があったものと推察される。

羽口(TUR − 10)粘土は高アルミナ(Al₂O₃)傾向が顕著であった。遺跡周辺の粘土の特徴を反映する ものではあるが、精錬鍛冶作業を集中して行うため耐火性の高い粘土を選択した可能性は高いと考え られる。

〈4〉椀形鍛冶滓(含鉄)(TUR-13)は、ごく小形の金属鉄を含む精錬鍛冶滓であった。金属鉄部は精 錬鍛冶作業中、滓中に取り残されたものと考えられる。炭素含有量は比較的まとまりの良い部分で 0.5~1.5%程度のばらつきを持つ。

【註】

1)粒状滓は鍛冶作業において凹凸を持つ鉄素材が鍛冶炉の中で赤熱状態に加熱されて、突起部が溶け落ちて酸化さ れ、表面張力の関係から球状化したり、赤熱鉄塊に酸化防止を目的に塗布された粘土汁が酸化膜と反応して、こ

第157図 Fe-O系平衡状態図

れが鍛打の折に飛散して球状化した微細な遺物である。

- 2) 鍛造剝片とは鉄素材を大気中で加熱、鍛打したとき、表面酸化膜が剝離、飛散したものを指す。俗に鉄肌(金肌) やスケールとも呼ばれる。鍛造剝片の酸化膜相は、外層は微厚のヘマタイト(Hematite:Fe₂O₃)、中間層マグネタ イト(Magnetite:Fe₃O₄)、大部分は内層ウスタイト(Wustite:FeO)の3層から構成される。このうちのヘマタイ ト相は1450℃を越えると存在しなく、ウスタイト相は570℃以上で生成されるのはFe-O系平衡状態図から説明さ れる(註7)。
- 3) 黒田吉益・諏訪兼位『偏光顕微鏡と造岩鉱物[第2版]』共立出版株式会社 1983 第5章 鉱物各論 D.尖晶石 類・スピネル類(Spinel Group)の記載に加筆

尖晶石類の化学組成の一般式はXY₂O₄と表記できる。Xは2価の金属イオン、Yは3価の金属イオンである。その組み合わせでいろいろの種類のものがある。(略)

4)日刊工業新聞社『焼結鉱組織写真および識別法』1968

ウスタイトは450~500Hv、マグネタイトは500~600Hv、ファイヤライトは600~700Hvの範囲が提示されている。 ウルボスピネルの硬度値範囲の明記はないが、マグネタイトにチタン(Ti)を固溶するので、600Hv以上であればウ ルボスピネルと同定している。それにアルミナ(Al)が加わり、ウルボスピネルとヘルシナイトを端成分とする固 溶体となると更に硬度値は上昇する。このため700Hvを超える値では、ウルボスピネルとヘルシナイトの固溶体の 可能性が考えられる。

5) J.B.Mac chesney and A. Murau: American Mineralogist, 46 (1961), 572

〔イルミナイト(Ilmenite:FeO·TiO₂)の晶出はFeO-TiO₂二元平衡状態図から高温化操業が推定される。〕 6)第159図は以下の発掘調査報告書に掲載された砂鉄、鉄滓の化学分析値を元に作成した。

- ①『八橋8・9遺跡』(財)鳥取県 教育文化財団埋蔵文化財センター 2004
- ②『中道西山東山遺跡』(財)鳥取県教育文化財団 2005
- ③『博労町遺跡』米子市教育文化事業団 2011
- ④『下市築地ノ峯東通第2遺跡』鳥取県埋蔵文化財センター 2013
- 7) 森岡進ら「鉄鋼腐食科学」『鉄鋼工学講座』11 朝倉書店 1975

第159図 鳥取県下の製鉄遺跡出土砂鉄・製錬滓と殿河内ウルミ谷遺跡A区出土鉄滓の化学組成

調查項目
の履歴と
供試材(
表79

<u> </u>				_	_			_		_			_			
	備考															
	€ カロリー															
	析耐火												0			
	化学分			0		0	0	0	0			0	0	0	0	0
頁目	EPMA				0	0		0								
調査リ	X線回折															
	ビッカーズ 断面硬度			0	0	0	0	0	0			0		0	0	0
	顕微鏡 組織	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	マクロ 組織			0												
	メタル度	なし	なし	() Г	なし	銹化(△)	なし	なし	なし	(O) H	なし	なし	なし	なし	なし	L ()
	磁着度	-	Т	5	1	ŝ	1	2	2	4	1	1	78	2	1	5
Jumi	重量(g)	-	1	110.0	12.0	20.0	192.0	3704.0	1352.0	1130.0	75.0	14540.0	318.0	1158.0	4401.0	324.0
計測値	大きさ(mm)	1	1	$64 \times 43 \times 25$	$28 \times 20 \times 34.5$	$39 \times 25 \times 12$	$55 \times 53 \times 41$	$217 \times 237 \times 97$	$155 \times 99 \times 72$	$243 \times 144 \times 123$	$66 \times 68 \times 17$	$343\times256\times177$	$69 \times 112 \times 50$	$185\times128\times49$	$176 \times 157 \times 58$	$95 \times 78 \times 41$
	推定年代	7c後半	7c後半		古代	古代	$10 \sim 12 \text{ c}$									
	遺物名称	粒状滓	鍛造制片	椀形鍛冶滓(含鉄)	羽口先端部	椀形鍛冶滓	板屋型羽口(鍛冶)	板屋型椀形鍛冶滓	流出孔~溝谇	再結合達	炉壁	板屋型椀形鍛冶滓	板屋型羽口	椀形鍛冶達?	板屋型椀形鍛冶滓	椀形鍛冶滓
	遺物No.	5-1	6-1	15	141	142	26	32	53	59	60	67	78	85	93	66
	出土位置	ISS8(堀立柱建物)	SSB貼床(下)	遺構外	遺構外	暗褐色土	NR1-1-c		NR1-1-d	NR1-1-c	NR1-2- d				NR1-2-a	NR1-2- d
	基区	CX		-			АK									
	遺跡名	殿河内	「ウルミ谷													
	符号	TUR-1	TUR-2	TUR-3	TUR-14	TUR-15	TUR-4	TUR-5	TUR-6	TUR-7	TUR-8	TUR-9	TUR-10	TUR-11	TUR-12	TUR-13

-251 -

鍛造剝片サイズ	
2-1	$3.0 \times 2.0 \times 0.4$
2-2	$2.9 \times 1.6 \times 0.2$
2-3	$2.2 \times 1.6 \times 0.2$
2-4	$1.6 \times 1.6 \times 0.2$
2-5	$2.1 \times 1.8 \times 0.15$
2-6	$2.0 \times 1.6 \times 0.15$

の組成
洪試材(
表80 1

									_		_
	TiO ₃ Total Fe	0.075	0.007	0.120	0.181	0.132	0.166	0.183	0.114	0.136	0.034
	造達成分 Total Fe	0.154	0.490	3.373	0.784	.781	778.0	22.163	0.764	0.660	0.278
l	港方	.57 (96.30 (2.56 8	2.47 0	3.42 (4.57 0	8.43 2	2.98 (7.93 (4.79 0
	耐火度 (°C)		- 2		1		-	1440 8	-	- 2	-
Ì	二酸化 ジルコ (ZrO ₂)	. 16	. 10.0).26	.22		. 19		.06
	鋼 (Cu)	<0.01 (<0.01 (<0.01	<0.01 (<0.01 (0	<0.01 (<0.01	<0.01 (<0.01 (<0.01 (
	${}^{h^*}_{\mathcal{L}} \neq {\mathcal{V}}^*_{\mathcal{V}} $	0.15	0.01	0.03	0.32	0.19	0.33	0.02	0.21	0.30	0.10
ľ	炭素 (C)	0.19	0.15	Ig loss 1.68	0.55	0.30	0.50	Ig loss 3.76	0.32	0.55	2.19
ľ	五酸化/燐 (P ₂ 05)	. 14	.17	.12	.20	.19	.23	.11	.21	.13	.07
ŀ	硫黄 (S)	0 060.0	0.054 0	0.012 0	0.025 0	0.037 0	0.063 0	0.012 0	0.029 0	0.054 0	0.11 0
ŀ	酸化 ^{711Å} Cr ₂ O ₃)	.05	.02 (0	.04	.12 (0	02 20-	.12 (0	02	.07 (.16 (.06 (
	二酸化 <i>+9ン</i> (TiO ₂) (.21 0	.37 0	.18 0	.51 0	.65 0	55 0	.73 0	.92 0	.77 0	.81 0
	後代ビマン 三 ガン (MnO) (0	.17 4	.03 0	.10 1	.28 7	.28 5	.22 6.	0 60.	.29 4	.21 5	.08 1
	後化けト ^{リウム} Na ₂ O) ((0 60	56 0	92 0	38	41 0	99 0	0 20	53 0	44 0	32 0
	酸化 ^{初94} (K ₂ O) (12 0.	.61 0.	17 1.	.52 0.	.62 0.	.70 0.	.95 2.	.62 0.	.27 0.	.23 0.
	化マか シウム MgO)	30 0.	53 <u>0</u> .	31 1.	90 90	92 0.	-0 <u>0</u>	32 0.	95 0.	30 0.	76 0.
	化加酸	51 0.8	85 0.6	10 1.3	57 2.(71 1.9	33 1.5	88 1.3	50 1.9	20 1.6	87 0.3
	ft27k 酸	1 0.4	6 0.3	04 2.	58 1.4	9 1.7	37 1.3	37 1.3	6 2.1	0 1	0 0.4
	変化 素 iO ₂) (A	1 2.5	39 5.7)2 24.	36 10.	17 9.2	2 11.	34 26.	2 8.6	2 8.7	3.2
	比 (S) (S) (S)	9 4.54	17.8	52.(9 17.3	3 19.4	7 18.4	55.8	18.7	15.7	§ 9.41
	「王 第2 (Fe ₂	51.4(17.6(7.48	12.19	10.98	15.67	3.25	14.61	27.54	35.6(
	。 第1第 (FeO	24.14	53.17	5.89	42.25	45.13	36.56	2.16	42.33	29.59	36.15
	金属鉄 (Metalli Fe)	1.09	0.06	0.05	0.07	0.05	0.03	0.04	0.05	0.03	0.21
	全鉄分 (Total Fe)	55.80	53.70	9.86	41.44	42.81	39.41	3.99	43.17	42.29	53.25
	推定年代	7c後半	古代.	$10 \sim 12 \text{ c}$							
Í	遺物名称	椀形鍛冶達 (含鉄)	椀形鍛冶滓 板屋型羽口 (鍛冶)先端部		板屋型椀形鍛 冶滓	流出孔~溝滓	板屋型椀形鍛 冶滓	板屋型羽口	椀形鍛冶滓?	板屋型椀形鍛 冶滓	椀形鍛冶滓
	出土位置	C区 遺構外	C区 遺構外	A⊠ NR1-1-c		AK NR1-1-d				A⊠ NR1-2-a	A⊠ NR1-2-d
	遺跡名	設河内 ラルミ谷									1
	符号	rur-3 🛒	rur-15	rur-4	rur-5	rur-6	rur-9	rur-10	rur-11	rur-12	rur-13

表81 出土遺物の調査結果のまとめ

-252 -

r									·								
		所見	熱間での鍛打加工に伴う微細な鍛冶関連遺物	熱間での鍛打加工に伴う微細な鍛冶関連遺物	精錬鍛冶港(始発原料:砂鉄)、金属鉄部はごく微細で鍛冶 原料とはなりえない	銅小物の溶解・鋳造に件う羽口	鍛錬鍛冶澤	精錬鍛冶作業に用いられた羽口(始発原料:砂鉄)	成分的には砂鉄製錬達の可能性が考えられるが、精錬鍛冶 達の可能性も考慮する必要がある	砂鉄製錬達の可能性が高い、(内部に微細な金属鉄が晶出 する被熱砂鉄が含まれる)	微細な製鉄関連遺物と鍛冶関連遺物が含まれる再結合達	製鉄炉の炉壁片か	成分的には砂鉄製錬達の可能性が考えられるが、精錬鍛冶 達の可能性も考慮する必要がある	精錬鍛冶作業に用いられた羽口(付着準の鉱物組成は製錬 達に近似しており、不純物の多い鍛冶原料が処理されてい た可能性が考えられる)耐火度:1440℃	精錬鍛冶滓(始発原料:砂鉄)の可能性が高いと考えられる	砂鉄製錬滓、または後続の精錬鍛冶滓双方の可能性が考え られる	精錬鍛冶作業に伴う含鉄鉄滓(始発原料:砂鉄)、内部には ごく小形の鋼が確認された
		Сп	1	I	<0.01	I	<0.01	<0.01	<0.01	<0.01	ı	I	<0.01	<0.01	<0.01	<0.01	<0.01
		造 海 谷	1	1	8.57	I	26.30	82.56	32.47	33.42	I	I	34.57	88.43	32.98	27.93	14.79
		МпО			0.17	1	0.03	0.10	0.28	0.28			0.22	60.0	0.29	0.21	0.08
	(%)	>			.15 (0.01	0.03	.32 (0.19 (. 33 (.02	.21 (. 30	0.10
	学組成	TiO_2			21 (0.37 (18	.51 0	.65 (.55 (.73 0	92 (.77 0	81 (0
	1	塩基性 成分	1	1	1.31 4	1	1.48 0	3.41 1	3.63 7	3.63 5	1	1	3.42 6	3.20	4.45 4	2.80 5	1.63 1
		$\mathrm{Fe}_2\mathrm{O}_3$			51.40		17.60	7.48	12.19	10.98			15.67	3.25	14.61	27.54	35.66
		Total F e			55.80		53.70	9.86	41.44	42.81			39.41	3.99	13.17	12.29	53.25
		顕微鏡組織	I:WまたはM、4~6:M、2·3ガラス質滓(微小金属 鉄)	$1 \sim 6:(He) + M + W$		外面表層が 57質淬、微細銅粒点在(多角形結晶:Cu a 相)	達部WまたはM+F、微細銹化鉄部(金属組織痕 跡不明瞭)	 辞部:UとHの固溶体+H+WまたはM+F、が ラス質 辞	涍部UとHの固溶体+H+W+F		砂鉄製錬滓(滓部-I)、銀冶滓、銹化鉄、粒状滓· 鍛造剝片	がラス質滓、局部的にM+F晶出	滓部:UとHの固溶体+F	付着達:UとHの固溶体+F、が ラス質溶	達部:UとHの固溶体+W+F	達部:UとHの固溶体+W+F、砂鉄(含497鉄鉱)、 砂鉄製錬滓片(滓部I+Ps)付着	達部:W(粒内微細UとHの固溶体)、金属鉄部:フェ ライト単相〜過共析組織
		推定年代	7c後半 7c後半		古代	古代	$10 \sim 12 \text{ c}$										
	:	遺物名称	粒状滓	鍛造制片	椀形鍛冶滓(含鉄)	羽口先端部	椀形鍛冶滓	板屋型羽口	板屋型椀形鍛冶滓	流出孔~溝滓	再結合達	炉壁	板屋型椀形鍛冶滓	板屋型羽口	椀形鍛冶達?	板屋型椀形鍛冶滓	椀形鍛冶滓
		出土位置	SS8(堀立柱建物)	貼床(下)	C区 遺構外	遺構外	暗褐色土	NR1-1-c		NR1-1- d	NR1-1-c	NR1-2-d				NR1-2-a	NR1-2- d
		地区	N O					AK									
		遺跡名	戦河内 ラルミ谷														
	1	符号	UR-1	'UR-2	'UR-3	'UR-14	'UR-15	'UR-4	'UR-5	'UR-6	'UR-7	UR-8	UR-9	'UR-10	UR-11	'UR-12	'UR-13
l			L	Ľ	Η	Γ	ιΗ	Ľ	Г	L	μ	Г	L	LL L	F	Г	L

-253 -

第161図 粒状滓・鍛造剝片の顕微鏡組織

第162図 鍛造剝片の顕微鏡組織

第163図 椀形鍛冶滓・羽口の顕微鏡組織

第164図 椀形鍛冶滓の顕微鏡組織・EPMA調査結果

第165図 流出孔~溝滓・再結合滓の顕微鏡組織

第166図 炉壁・椀形鍛冶滓の顕微鏡組織

第167図 羽ロ・椀形鍛冶滓の顕微鏡組織

第168図 椀形鍛冶滓の顕微鏡組織

第169図 羽ロの顕微鏡組織・EPMA調査結果

第170図 椀形鍛冶滓の顕微鏡組織・EPMA調査結果

第4節 殿河内ウルミ谷遺跡出土須恵器の胎土分析

1 はじめに

この胎土分析では、殿河内ウルミ谷遺跡で確認された須恵器窯出土と想定される試料および同遺跡 出土の須恵器試料についての成分分析を実施し、須恵器窯(生産地)と消費地の関係について検討した。

2 分析方法と試料

分析は蛍光X線分析法で行い、胎土の成分(元素)量を測定し、その成分量から分析試料の差異について調べた。測定した成分(元素)は、Si、Ti、Al、Feと点をプロットしたものである。この散布図より難波宮跡出土須恵器甕はCa量の違いで2つの胎土に分類された。それは上町谷窯跡領域に分布するMg、Ca、Na、K、P、Rb、Sr、Zrの13成分である。

なお測定装置・条件・試料は以下の通りである。

測定装置:SEA5120A(エスアイアイ・ナノテクノロジー社製)を使用した。

測定条件:X線照射径2.5mm、電流50~200mA、電圧50kV/15kV、測定時間300秒、測定室は真空の条件で測定した。

測定元素:13成分の定量値は地質調査所の標準試料JA-1(安山岩)、JG-1a(花崗岩)、JR-1(流 紋岩)、JB-1a(玄武岩)、JF-1(長石)の5個の試料を用いて検量線を作成し、定量値を算出した。

測定試料:分析試料は、須恵器表面の汚れを除去後(研磨機)、乾燥した試料を乳鉢(タングステン カーバイト製)で粉末(100~200メッシュ)にしたものを加圧成形機で約15^トッの圧力をかけ、コイン状に成 形したものを測定試料とした。したがって、一部破壊分析である。

分析結果の比較(差異)は、有意な差がみられる成分を横軸と縦軸にとり、散布図を描き、各遺跡 (窯跡)にまとまりがあるか検討した。

表82に殿河内ウルミ谷遺跡出土須恵器の分析一覧表を示している。分析点数は56点である。

3 分析結果について

この分析では測定した13成分のうち、分析試料に顕著な差がみられたのは、Ca、K、Rb、Srの4 成分であった。このうちの3成分(Ca、K、Sr)が各窯跡で胎土に違いがみられ、Caを縦軸にKとSrを 横軸にとった散布図を作成し、胎土の違いを検討した。

第171図K-Caと第172図Sr-Caの散布図は、殿河内ウルミ谷遺跡出土の窯試料と遺跡内試料の比 較を行ったものである。その結果、窯試料と遺跡内試料ではCa・Sr量に差異がみられ、識別が可能 であった。つまり、Ca量0.5%付近を境にして、それより多いところに窯試料が、低いところに遺跡 内試料が分布した。またSr量146ppm付近を境にして、それより多いところに窯試料が、低いところに 遺跡内試料が分布した。なお、窯試料のうち試料番号3・4の2点は分布領域内には入らなかった。 また、遺跡内出土須恵器のうち試料番号25・30・33・38・52・55・56は窯試料の分布域に分布した。

試料番号47はCa・Sr量が非常に少なく、窯および遺跡内試料とも胎土が異なっていた。

第173図K-Caと第4図Sr-Caの散布図は、山陰地域の生産地遺跡(松江市大井窯跡群、鳥取県鳥越山 窯跡群・下市築地ノ峯東通第2遺跡・私都窯跡群)である窯跡別試料との比較を行った。すると、第 173図では松江市大井窯跡群と鳥取県下市築地ノ峯東通第2遺跡の両窯跡が半分ほど重複する部分に、 殿河内ウルミ谷が重なる結果となった。

第174図では、殿河内ウルミ谷は大井とは識別が可能であったが、鳥越山や下市築地ノ峯東通第2 遺跡とは重なり、判別ができなかった。

第175図K-Caと第176図Sr-Caの散布図は、殿河内ウルミ谷遺跡の製品がどの生産地と胎土的に類 似するか検討した。その結果、私都窯跡群か下市築地ノ峯東通第2遺跡のどちらかに胎土が類似して いることが推定された。

4 まとめ

殿河内ウルミ谷遺跡出土須恵器の分析結果から、まず窯跡試料である試料番号1~24(窯壁1・2 と3・4以外)は、ほぼ一つにまとまった。また遺跡内に製品として出土した試料番号25~56(25・ 30・33・38・47・52・55・56以外)は一つにまとまった。そして窯試料と製品は、胎土が異なってい ることが推定された。なお、4は製品分布域に入り、3と47は、両方の分布域には入らず、胎土が異 なっていた。以上のようの同遺跡出土の須恵器には複数の胎土があることがわかった。

山陰地域の各窯跡との比較では、殿河内ウルミ谷遺跡の窯跡出土須恵器は、下市築地ノ峯東通第2 遺跡・私都窯跡群などの分布域と重なり、窯ごとに胎土が異なることはなかった。また、殿河内ウル ミ谷遺跡の製品(試料番号26~29・31・32・34~37・39~51・53~55)は、私都および下市築地ノ峯東 通第2遺跡の胎土と一致することが推定された。

この胎土分析を実施するにあたり、牧本哲雄氏をはじめ、鳥取県埋蔵文化財センターの職員の方々 にはお世話になった。末筆ではありますが、記して感謝いたします。

-266 -

表82 殿河内ウルミ谷遺跡出土須恵器の胎土分析一覧表(Si~P:%、Rb~Zr:ppm)

封約						1	1	1						1	1
悉是	器種	Si	Ti	Al	Fe	Mn	Mg	Ca	Na	K	P	Rb	Sr	Zr	備考
ш., 1	空辟	67 41	0 47	15 63	4 14	0.08	2.63	3 55	4 14	1 77	0.05	7	634	121	空関連
2	空辟	67.49	0.44	15.75	3 92	0.05	2.00	4 03	3 91	1 80	0.06	9	716	118	空関連
3	<u>「「」</u> 「「」」 「「」」	71 44	1 40	19.29	4 66	0.00	1 56	0.20	0.01	1.00	0.05	18	40	378	空関連
1	「「血」	74.35	0.08	15.63	4.01	0.00	1.07	0.20	0.01	2.84	0.05	18	137	208	空間連
4 5	「なら	75.56	0.00	13.05	2.83	0.00	1.55	1 20	1 63	2.04	0.03	61	276	230	空間油
6	がター	68 15	1 10	17.24	8 13	0.01	2 20	0.54	0.00	2.13	0.04	60	162	203	<u> </u>
7	坏良	67.60	1.19	17.34	0.43	0.02	2.20	0.54	0.00	2.00	0.03	52	102	295	<u> </u> 宏 眼 演
/ 0	「「「「「」」	60.65	1.05	17.43	7.41 E.61	0.04	2.00	1.95	1.46	2.24	0.05	20	211	300	二、一、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二、二
8	小夕	09.00	1.05	17.02	0.01	0.01	1.65	1.20	1.40	1.07	0.04	30	311	207	羔 浅 理 空 明 ' 声
9	小査	73.20	1.05	15.52	4.11	0.02	1.65	0.90	1.14	2.12	0.02	44	202	302	羔肉理
10	小牙	13.19	1.13	15.16	4.37	0.00	1.60	0.60	1.14	2.11	0.03	49	1/3	301	羔渕建
11	掟 帆 立 ム 広	73.55	1.20	16.05	4.43	0.00	1.37	0.63	0.75	1.89	0.02	39	139	353	羔 用 法
12	局台环	72.94	1.17	16.63	3.43	0.02	1.58	0.65	1.05	2.31	0.04	66	170	289	<u> </u>
13		69.78	1.12	16.93	5.58	0.06	2.34	0.81	1.00	2.22	0.04	78	170	285	窯関連
14	小型高坏	73.98	1.01	15.76	4.19	0.00	0.41	1.04	1.49	1.91	0.04	24	157	258	窯関連
15	壺	74.29	0.96	14.60	3.54	0.02	1.54	1.10	1.46	2.25	0.03	56	265	287	窯関連
16	壺底部(内部に窯壁)	73.18	1.14	15.90	4.19	0.01	1.67	0.73	1.09	1.92	0.04	53	178	309	窯関連
17	坏蓋	69.77	1.10	17.82	4.58	0.01	2.53	0.67	0.95	2.39	0.05	74	216	274	窯関連
18	坏身	73.41	1.02	14.81	4.55	0.01	1.66	0.83	1.22	2.25	0.04	49	202	271	窯関連
19	坏身	71.99	1.01	16.77	3.91	0.01	1.91	0.95	1.16	2.05	0.05	43	223	319	窯関連
20	坏身	72.25	1.04	16.27	4.30	0.01	1.93	0.84	1.09	1.99	0.05	39	199	347	窯関連
21	高坏	72.56	1.20	16.29	4.33	0.01	1.56	0.75	0.99	2.13	0.03	53	178	313	窯関連
22	坏身?(溶着)	73.89	0.97	14.86	4.02	0.02	1.16	1.03	1.63	2.22	0.03	66	236	277	窯関連
23	高坏	74.34	1.24	15.79	4.68	0.01	0.77	0.59	0.26	2.20	0.02	69	146	369	窯関連
24	坏蓋	72.58	1.10	16.21	4.03	0.03	1.57	0.99	1.26	2.11	0.03	41	224	288	窯関連
25	坏	70.61	1.04	17.36	4.89	0.03	2.11	0.58	1.12	2.13	0.03	60	135	320	製品
26	坏蓋	73.92	0.94	14.84	5.72	0.02	0.57	0.43	1.02	2.40	0.03	63	126	296	製品
27	高台坏	74.64	1.11	15.55	4.95	0.02	0.68	0.32	0.34	2.28	0.03	40	114	379	製品
28	坏蓋	73.21	1.06	16.28	4.44	0.04	1.28	0.36	0.57	2.57	0.04	65	146	291	製品
29	坏	78.00	0.81	13.75	3.71	0.00	0.35	0.32	0.42	2.48	0.05	71	95	286	製品
30	坏身	69.36	1.04	16.99	7.09	0.02	1.87	0.78	0.88	1.83	0.03	39	183	280	製品
31	坏身	71.49	1.11	18.08	4.54	0.01	0.99	0.38	0.48	2.76	0.03	72	129	333	製品
32	高台坏	75.05	1.18	14.96	5.62	0.04	0.36	0.42	0.00	2.22	0.04	43	113	355	製品
33	高台坏	70 13	1 01	17.38	5 20	0.02	2.09	0.78	1 23	2 02	0.05	46	178	301	製品
34	高坏	71 90	1 09	17.65	4 88	0.01	1 43	0.28	0.20	2.42	0.05	52	50	329	製品
35	高台坏	74 01	1.00	15.84	4 89	0.02	0.98	0.36	0 44	2.26	0.06	33	107	289	製品
36	壅晍部	72 27	0.95	15.61	5 35	0.01	1 81	0.32	0.93	2.50	0.05	56	102	205	制品
37	远///10 ²	74 48	0.95	14 97	3 77	0.01	1 48	0.42	1 00	2.67	0.04	67	102	282	制品
38	榆	79.97	0.95	16.75	6 /1	0.03	1.52	0.42	1 10	2.07	0.04	40	165	202	制品
30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	76.81	0.93	13 77	4 17	0.00	0.40	0.72	0.02	2.00	0.04	40	1/0	284	利品
40	<u></u> 亚海	70.81	0.93	15.77	4.17	0.00	1 10	0.40	0.92	2.29	0.04	36	149	204	<u>衣</u> 田 制旦
40	工 瓜 雍	79.10	0.07	12.52	2.05	0.01	0.72	0.35	0.90	2.00	0.04	42	02	210	表 III 制 口
41 49	瓦 太 芋	75.20	0.00	15.00	0.20 4.97	0.00	0.70	0.37	0.11	2.41	0.04	42	102	050	衣印 制 口
42	小 五	75.20	0.82	15.00	4.27	0.00	0.70	0.37	0.88	2.48	0.04	43	103	422	彩印
43	小牙	/1./4	1.50	16.07	7.40	0.00	0.41	0.40	0.20	2.06	0.04	54	109	433	彩印
44	小盍	73.94	1.10	15.52	5.46	0.03	0.44	0.42	0.46	2.42	0.04	46	133	323	彩品
45	<u> </u>	74.54	1.13	15.30	4.55	0.00	0.95	0.40	0.73	2.26	0.06	25	117	340	彩品
46	半瓶	75.44	0.97	14.20	3.30	0.01	1.61	0.44	1.08	2.73	0.04	54	104	304	彩品
47	坏蓋	69.54	1.05	19.37	7.26	0.00	0.47	0.05	0.00	2.11	0.03	54	24	348	製品
48		75.59	0.94	14.57	3.83	0.00	1.30	0.39	0.79	2.41	0.04	50	119	269	製品
49	半瓶	69.83	1.20	17.03	5.80	0.07	2.27	0.35	1.06	2.25	0.06	47	86	324	製品
50	平瓶	72.64	1.05	15.94	4.94	0.01	1.65	0.36	0.87	2.40	0.06	50	90	246	製品
51	小型高坏	79.06	0.78	13.08	3.17	0.00	0.51	0.35	0.33	2.48	0.05	47	83	199	製品
52	高台坏	68.75	1.00	17.19	6.48	0.02	2.30	0.77	1.20	2.19	0.03	58	193	275	製品
53	坏身	76.69	1.14	13.93	5.16	0.07	0.20	0.39	0.00	2.30	0.04	39	105	276	製品
54	坏身	73.73	1.01	15.96	4.33	0.01	1.10	0.29	0.88	2.59	0.04	34	98	253	製品
55	高杯	72.29	1.07	15.81	4.42	0.02	1.83	0.81	1.41	2.22	0.04	59	178	327	製品
56	坏身	69.87	1.06	17.06	7.13	0.01	1.26	0.88	0.62	1.97	0.03	45	199	300	製品